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Abstract
 

This article provides new insights into the cyclical behavior of consumer and producer 
real wages in the USA and Germany. We apply two methods for the estimation of the 
cyclical components from the data: the approach based on the structural time series models 
and the ARIMA–model–based approach combined with the canonical decomposition and 
a band–pass filter. We examine the extracted cycles drawing on two wavelet concepts: 
wavelet coherence and wavelet phase angle. In contrast to the analysis in the time or 
frequency domains, wavelet analysis allows for the identification of possible changes in 
cyclical patterns over time. From the findings of our study, we can infer that the USA 
and Germany differ with respect to the lead–lag relationship of real wages and the business 
cycle. In the USA, both real wages are leading the business cycle in the entire time interval. 
The German consumer real wage is, on the other hand, lagging the business cycle. For 
the German producer real wage, the lead–lag pattern changes over time. We also find 
that real wages in the USA as well in Germany are procyclical or acyclical until 1980 and 
countercyclical thereafter. 

JEL Classification: E32, C22, C32, J30 

Keywords: Real wages, business cycle, wavelet analysis, wavelet phase angle, trend–cycle 
decomposition, structural time series model, ARIMA–model–based approach, band–pass 
filter 



1 Introduction 

The question of real wage behavior in the course of the business cycle has been analyzed 

in many studies, particularly in the US case. Most of the studies based on aggregate data 

concentrate on the analysis in the time domain, see for example, the detailed surveys of 

Abraham and Haltiwanger (1995) and Brandolini (1995) for the USA and the studies of 

Brandner and Neusser (1992) and Pérez (2001) for Germany. A disadvantage of common 

time–domain comovement tools as, for example, sample cross–correlations or regression 

coefficients of some cycle reference measure is that they are incapable of identifying de­

tailed patterns of cyclicality since they do not differentiate between horizons at which 

comovement could be detected. 

To overcome this shortcoming of the time domain analysis, some studies consider the 

comovements in the frequency domain where one is able to assess the relative importance 

of components with different periodicities for the observed behavior. The frequency– 

domain approach in the investigation of real wage cyclicality is followed in the works 

of, e.g., Marczak and Beissinger (2012), Hart et al. (2009) and Messina et al. (2009). 

Standard multivariate spectral techniques, such as cross–spectrum, coherency or phase 

angle, are, however, time–invariant. In order to additionally take time information into 

account, we propose to use wavelet analysis as an alternative tool to measure comovements 

between time series. Applications based on wavelet measures are already widespread in 

such disciplines as physics, meteorology, geology, medicine, oceanography or engineering. 

In economics, wavelet analysis was first considered in articles by, e.g., Ramsey et al. (1995), 

Ramsey and Lampart (1998) and Gençay et al. (2001), but its advantages, in contrast 

to other sciences, have not been extensively exploited yet. A review of different wavelet 

concepts with a focus on economic applications is given by Crowley (2007). Wavelet 

functions which are the building block of the wavelet approach are, unlike the sine and 

cosine functions used in spectral analysis, local in both the time and frequency domains, 

which makes wavelets suited to capture changes in behavior patterns. Wavelet analysis 

can therefore reveal how the relationship between different periodic components of time 

series evolves over time. This property enables us to obtain a more comprehensive picture 

of real wage cyclicality. Better understanding of the nature of cyclical behavior of real 

wages can be of great relevance for monetary policy. 
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This article is also an attempt to provide a reliable comparison of the real wage
 

cyclicality in the USA and Germany. Given the differences in statistical classifications as 

well as the availability of the data in both countries, we consider the most comparable 

sectors of industry in the USA and Germany. To avoid possible influences of different 

seasonal adjustment methods, we use raw data. 

Furthermore, we apply two different methods to estimate cycles from time series to 

check the robustness of the findings: the first one uses the structural time series (STS) 

model proposed by Harvey (1989) and the second one consists of the ARIMA–model–based 

(AMB) approach (see, e.g., Box et al., 1978) combined with the canonical decomposition 

(see Hillmer and Tiao, 1982) and the application of a band–pass filter based on a But­

terworth tangent filter (see Gómez, 2001). A great advantage of these methods is that 

they are well suited to remove seasonality from the data. Moreover, they also take into 

account the stochastic properties of the data as opposed to ad hoc filtering methods like 

the filters proposed by Hodrick and Prescott (1997) or Baxter and King (1999), which are 

very popular in macroeconomic applications, mostly because of their convenient imple­

mentation. Since the results may also be affected by the price deflator used to compute 

real wages, we distinguish between consumer real wages and producer real wages. 

The remainder of the article is organized as follows. In Section 2 we apply two de­

composition methods to the industrial production index (IPI), consumer real wages and 

producer real wages in the USA and Germany. In Section 3.1 we set out the most impor­

tant wavelet concepts. More detailed explanations of one of them, the wavelet phase angle, 

are provided in Section 3.2. In Section 3.3 it is shown how the previously introduced con­

cepts are implemented in our study. In Section 3.4 we examine the comovements between 

the particular IPI cycle and the corresponding real wage cycles in the time–frequency 

domain using wavelet analysis. Section 4 summarizes the results and concludes. 

2 Cyclical component 

We assume that the time series under consideration or the log of it can be expressed as 

the sum of several unobserved components. Under this assumption, the series of interest 

is usually decomposed as 

yt = pt + st + ct + it, (1) 
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where pt is the trend, st is the seasonal, ct is the cyclical and it is the irregular component. 

The different components are assumed to be uncorrelated and they are best defined in 

the frequency domain. Thus, the trend component is associated with a spectral peak at 

the zero frequency, the seasonal component has spectral peaks at the seasonal frequencies, 

defined as 2πk/s, k = 1, 2, . . . , [s/2], where s is the number of seasons and [s/2] denotes the 

integer part of s/2, and the irregular component is usually assumed to be white noise.1 

Finally, for economic series, the cyclical component is supposed to have some spectral 

peak in a frequency band corresponding to periods between 1.5 and 8 years. Since the 

relationship between frequency ω and period p is given by the formula p = 2π/ω, the 

cyclical band for quarterly series is [π/16, π/3]. 

To estimate the cyclical component, ct in (1), the usual approach in economics is 

to apply a fixed filter, like the Hodrick–Prescott or the Baxter–King filter. However, 

this approach has its limitations because it does not take into account the stochastic 

characteristics of the series at hand. For example, it is well known that one can generate 

spurious cycles if one applies a fixed filter to a white noise series. For this reason, in this 

article we propose to use two model–based methods to estimate the cycle in an economic 

time series. 

The first method is based on the so–called structural models introduced by Harvey 

(1989). These models assume a decomposition of the form (1), where the components 

follow certain ARIMA models. See Harvey (1989) for details. The model can be put 

into state space form and the Kalman filter and smoother can be used to estimate the 

unobserved components. It is to be noted that in this approach the models for the 

components are specified beforehand. 

The second method consists of the AMB approach combined with the canonical de­

composition and the application of a band–pass filter. It has two steps. In the first one, 

an ARIMA model is specified for the series and the canonical decomposition is used to de­

rive models for the trend–cycle, seasonal and irregular components (see Hillmer and Tiao, 

1982). In the second step, the cycle is estimated by the application of a band–pass filter, 

designed to extract the random elements in the cyclical frequency band, to the trend–cycle 

obtained in the first step. The procedure is fully model–based and is described in Gómez 

1For a nonstationary series we would consider the pseudospectrum instead of the spectrum. 
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Figure 1: US cycles of the IPI and real wages based on the STS approach and a 

band–pass (BP) filter 

(2001). Once models for the different components, including the cycle, are obtained, the 

overall model can be put into state space form and the Kalman filter and smoother can 

be applied to estimate the components as in the first method. 

Although both methods are model based, the second one is more likely to extract 

smoother, more definite, cycles because only those random elements corresponding to 

the cyclical frequency band are passed by the band–pass filter. The cycle estimated 

with structural models will usually be less smooth. In order to get smoother cycles with 

structural models, one should use the generalized cycle models of Harvey and Trimbur 

(2003). However, the cycles estimated with structural models will be satisfactory enough 
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Figure 2: German cycles of the IPI and real wages based on the STS approach 

and a band–pass (BP) filter 

for the purposes of this article.2 

In Figure 1, one can see the cycles estimated with both methods for the US series. 

As expected, the cycles estimated with the band–pass filter are smoother than the cycles 

estimated with the structural models. 

The cycles estimated with both methods for the German series are displayed in Figure 

2. Here, one can also see that the cycles estimated with the band–pass filter are smoother. 

2We use the SSMMatlab toolbox to perform all necessary computations (see Gómez, 2012). Only 

the identification of an ARIMA model and outlier and regression effects for the series at hand for the 

AMB approach is made using program TRAMO (see Gómez and Maravall, 1996). The same outlier and 

regression effects are used with structural models. 
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3	 Comovements of real wages and the business cycle: 

wavelet analysis 

3.1 Wavelet concepts 

In the economic literature on wavelet analysis, three directions emerged: the continuous 

wavelet transform (CWT) (see, e.g., Rua and Nunes, 2009), the discrete wavelet transform 

(see, e.g., Crowley and Mayes, 2008) and the maximum overlap discrete wavelet transform 

(see, e.g., Gallegati et al., 2011). They differ in the way how a function of time is mapped 

onto the time–frequency plane. Our analysis relies on the CWT. In this section, we resort 

to some key concepts associated with this type of transform. 

The building block of wavelet analysis is the so–called mother (or analyzing) wavelet, 

denoted herafter as ψ. Suppose that ψ is a real– or complex–valued function in L1(R) ∩ 

L2(R), i.e. :
 ∞	  ∞ 

ψ(t)dt < ∞, |ψ(t)|2dt < ∞	 (2) 
−∞	 −∞ 

In other words, ψ has finite energy since it holds:
 ∞ 

 ψ 2 = (ψ, ψ∗) = |ψ(t)|2dt,	 (3) 
−∞ 

where  ·  and (·) denote the norm and the inner product, respectively, and ψ∗ is the 

complex conjugate of ψ. Function ψ qualifies for the mother wavelet, if it satisfies the 

admissibility condition (see, e.g., Farge, 1992; Daubechies, 1992, p. 24): 
 ∞ |Ψ(ω)|2 

0 < Cψ = dω < ∞,	 (4) 
|ω|−∞ 

where ω is the angular frequency, Ψ(ω) is the Fourier transform of ψ(t) and Cψ is called 

the admissibility constant. The admissibility condition implies 
 ∞ 

Ψ(0) = ψ(t)dt = 0 
−∞ 

Along with the sufficient decay property, this ensures localization in both time and fre­

quency. Moreover, it is usually assumed that  ψ = 1, implying unit energy of ψ. On 

the basis of the mother wavelet, a doubly–indexed family of wavelets is generated by the 

so–called translation and dilation (scaling) of ψ: 
  

1	 t − τ 
ψτ,s(t) = ψ , τ, s ∈ R, s  0	 (5) v	 = 

|s| s
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Translation leads to a shift of ψ by the so–called translation parameter τ . Dilation, on 

the other hand, reduces or increases the support of ψ, if |s| < 1 or |s| > 1, respectively, 
v 

where s is the so–called dilation (scaling) parameter. The factor 1/ |s| guarantees that 

ψτ,s preserves unit energy. 

The CWT of a continuous function x in L2(R) is given by: 

Wx,ψ(τ, s) = (x(t), ψ∗ (t))τ,s

∞ (6) 1 t − τ 
ψ ∗ = x(t)v dt 

−∞ |s| s 

Parseval’s relation (x, ψ) = (1/2π) (X, Ψ), where X is the Fourier transform of x, allows 

to write Wx,ψ(τ, s) as: 
v 

|s| ∞ 
iωτ dω Wx,ψ(τ, s) = Ψ∗(sω) X(ω) e (7) 

2π −∞ 

Note that in eq. (6) and (7) τ corresponds to the time dimension, whereas s refers to 

the scale dimension, implying that Wx,ψ(τ, s) provides a time–scale representation of the 

analyzed function x. A particular scale represents a frequency band which makes it 

difficult to interpret the frequency content of x directly (see, e.g., Sinha et al., 2005). 

However, it is possible to convert scales into Fourier (or angular) frequencies, as there 

exists a formula that makes use of the so–called center frequency of the wavelet and 

states an inverse relation between scale and frequency (see, e.g., Abry et al., 1995). For 

an appropriate choice of the functional form of the wavelet, this relation becomes more 

straightforward and facilitates the interpretation of the wavelet transform in terms of 

frequency. In such a case, we will use the terms scale and frequency interchangeably. 

The wavelet power spectrum of x is obtained as: 

Px,ψ(τ, s) = |Wx,ψ(τ, s)|
2 (8) 

and represents the local variance of x. If the time–frequency relationship between two 

time series is of interest, it can be measured by the so–called wavelet cross–spectrum 

interpreted as the local covariance between these time series. For a pair of functions x 

and y, both in L1(R) ∩ L2(R), the wavelet cross–spectrum is defined as (see Hudgins et 

al., 1993): 

Wxy,ψ(τ, s) = Wx,ψ(τ, s) W ∗ (τ, s) (9) y,ψ
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In general, eq. (9) can also be written as:
 

Wxy,ψ(τ, s) = ℜ(Wxy,ψ(τ, s)) + ℑ(Wxy,ψ(τ, s)) (10) 

φxy,ψ(τ,s)= |Wxy,ψ(τ, s)| e , (11) 

where ℜ(Wx,y;ψ(τ, s)) denotes the wavelet co–spectrum and ℑ(Wx,y;ψ(τ, s)) is the wavelet 

quadrature spectrum, whereas φxy,ψ(τ, s) in the polar form (11) corresponds to the wavelet 

phase angle. If Wxy,ψ(τ, s) is real, the quadrature spectrum and the phase angle are both 

zero. As the economic data are, in general, real–valued, it is evident that Wxy,ψ can be 

complex–valued only for complex ψ. In the following, we consider only the case of complex 

wavelet functions since they allow for better insight into the comovement between two 

series by decoupling the amplitude and the phase angle. 

In the literature, one can find several concepts that build on the information contained 

in the wavelet cross–spectrum. The most common ones are wavelet coherency and wavelet 

squared coherency, also called wavelet coherence (see, e.g., Liu, 1994). Both can be seen as 

the counterparts of the frequency–domain coherency and coherence, respectively. Wavelet 

coherency is given by: 

Wxy,ψ(τ, s)
Rxy,ψ(τ, s) = (12) 

|Wx,ψ(τ, s)| |Wy,ψ(τ, s)| 

Since Wxy,ψ(τ, s) directly enters the formula for Rxy,ψ(τ, s), wavelet coherency is, like 

wavelet cross–spectrum, complex–valued and therefore difficult to interpret. For that 

reason, the concept of coherency will not be pursued in this study. Square of the wavelet 

|Wx,ψ(τ, s)|2 |Wy,ψ(τ, s)|2 

coherency, wavelet coherence, is defined as: 

R2 
xy,ψ |Wx,ψ(τ, s)|2 |Wy,ψ(τ, s)|2

(τ, s) = 
|Wxy,ψ(τ, s)|2 

(13) 

= 
[ℜ(Wxy,ψ(τ, s))]2 + [ℑ(Wxy,ψ(τ, s))]2 

(14) 

Since the sample analog of R2 (τ, s) takes on the value one for all τ and s, Liu (1994) xy,ψ

suggests to analyze the real and the imaginary parts separately in order to avoid this prob­

lem. We follow the approach of Torrence and Webster (1999) and reformulate R2 (τ, s)xy,ψ

as 
S(|Wxy,ψ(τ, s)|2)

R2 (τ, s) = , (15) xy,ψ S(|Wx,ψ(τ, s)|2) S(|Wy,ψ(τ, s)|2)
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where S denotes a smoothing operator in both time and scale. Smoothing is achieved 

by a convolution of the function to be smoothed and a window function. The wavelet 

coherence is one of the two comovement concepts used in this article. The other one, the 

wavelet phase angle, is explained in more detail in the next subsection. 

3.2 Wavelet phase angle and its interpretation 

Despite of its usefulness in measuring the strength of the time–frequency relationship, 

R2 (τ, s) is able neither to determine the direction (positive or negative) of this re­xy,ψ

lationship nor to establish the lead–lag relation between the series at hand. For this 

purpose, the concept of the phase angle is well suited. The wavelet phase angle that has 

been already introduced in eq. (11) is defined as: 

  

ℑ(Wxy,ψ(τ, s)) 
φxy,ψ(τ, s) = arctan (16) 

ℜ(Wxy,ψ(τ, s))

From the properties of arctangent it follows that the phase angle φxy,ψ(τ, s) is a multi­

valued function. For given τ and s, the values of arctangent are given by the respective 

principal value ±nπ, where n = 0, 1, 2... and the principal value lies in (−π/2, π/2). 

It is common to limit values of the phase angle to the interval [−π, π].3 Note that 

φxy,ψ(τ, s) ≡ ±π/2 for ℜ(Wxy,ψ(τ, s)) = 0 and ℑ(Wxy,ψ(τ, s)) ≷ 0. If, for specific τ 

and s, the relation 0 < φxy,ψ(τ, s) < π occurs, y is said to lag x at (τ, s). The opposite 

case is implied by −π < φxy,ψ(τ, s) < 0. Both series are in phase for particular (τ, s), if 

φxy,ψ(τ, s) equals zero. Based on the values of the phase angle we can also make state­

ments about the in–phase or anti–phase relation between the components of x and y. If 

the values of the phase angle range between (−π/2, π/2), the respective components are 

positively related to each other (procyclical behavior/in–phase movement), whereas the 

values of φxy,ψ(τ, s) in the interval [−π, −π/2) or (π/2, π] indicate a negative relationship 

(countercyclical behavior/anti–phase movement) between them. The interpretation of the 

phase angle values is summarized in Figure 3. 

Sometimes, if knowledge about the mean direction of the relationship between time 

series is desired, it can prove convenient to analyze the mean phase angle. Due to the 

3Marczak and Beissinger (2012) provide a rationale for this common practice and an interpretation of 

the values of the phase angle. 
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circular nature of the phase angle, the standard arithmetic mean fails to be an appropriate 

technique for that purpose. Instead, the concept of a mean specially devoted to the data 

measured on the angular scale should be employed (see, e.g., Zar, 1999). This concept 

rests on the fact that for any phase angle φi it holds that tan(φi) = sin(φi)/ cos(φi). 

Thus, φi can be represented in the Argand diagram as the angle between the positive 

half of the real axis and the unit length vector ri = (cos(φi), sin(φi)). Averaging over all 

ri, i = 1, ..., n, where n is the length of the sample of the phase angles, leads to the so– 

¯called mean resultant vector r̄. The mean phase angle φ is then obtained as arctan(r̄2/r̄1), 

where j = 1, 2 denotes the jth element in r̄. In addition, the length of r̄ ( r̄ ), ranging 

from zero to one, quantifies the concentration of the sample around r̄ and, therefore, it 

plays an important role in significance testing. Values r̄ closer to zero (one) indicate 

higher (smaller) circular spread within the sample. Figure 4 illustrates the idea of the 

mean for circular data with an example of three phase angle values: 20◦ , 80◦ and 320◦ . It 

is evident that the arithmetic mean being equal to 140◦ would be a misleading measure of 

the mean since the vectors (gray) corresponding to the sample phase angles point all to 

the right. The mean resultant vector (black) of length 0.667 points to the same direction 

and implies the mean value 20◦ . 
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3.3 Implementation of wavelet concepts and significance testing 

In empirical applications involving wavelets, one of the choices to be made concern the 

selection of the functional form of the wavelet. As has been pointed out in section 3.1, in 

the case of real–valued series it is more informative to use complex wavelets. We consider 

the so–called Morlet wavelet which is a complex–valued continuous function: 

π−1/4 iω0t − −ω
0

2/2) −t2/2ψω0 (t) = (e e e , 

ω2/2
0where π−1/4 is a normalization factor. Expression e represents the correction term to 

enforce the term in brackets to have zero mean, thereby ensuring that the admissibility 

condition is satisfied. One of the advantages of the Morlet wavelet is that the aforemen­

tioned inverse relation between scale s and Fourier frequency f (or angular frequency ω) 

becomes very simple for the common choice ω0 = 6, i.e. f ≈ 1/s (ω ≈ 2π/s). 

Moreover, the Morlet wavelet allows for the optimal time–frequency localization. Ac­

cording to the Heisenberg uncertainty principle, there is always a trade–off between the 

precisions obtained in the time and frequency spaces. It can be shown that for the Morlet 

wavelet with ω0 = 6, total uncertainty is minimized, and, in addition, the uncertainty 

associated with time localization is equal to that associated with frequency localization 

so that the best time–frequency balance can be attained (see Aguiar-Conraria and Soares, 

2011b). 

As outlined before, we restrict ourselves to the usage of the wavelet coherence and 

the wavelet phase angle. Since we are dealing with discrete data, the wavelet measures 

described in section 3.1 have to be discretized. Derivation of the discrete version of the 

CWT in eq. (7) which can serve as a basis for the discrete version of the other wavelet 

tools is presented by Aguiar-Conraria and Soares (2011b). Due to the finite length of the 

series, it is common to pad the series with zeros prior to the application of the transform. 

This procedure helps to avoid wrap–around effects that arise because the used discrete 

Fourier transform assumes that the data are periodic. However, zero–padding also leads to 

underestimation of the CWT values near the ends of the sample. This problems becomes 

more severe with increasing scales as the wavelet support increases and hence more zeros 

are involved in the computation of the CWT at the beginning and at the end of the series. 

Regions affected from these border distortions are called cone of influence (COI). Values 

11
 



of the wavelet measures that fall into the COI should be interpreted with caution.4 

The calculated measures are estimates of their theoretical counterparts and therefore 

it is important to assess the significance of the results. One of the first works where the 

significance issue is addressed in the context of wavelet analysis is the article by Torrence 

and Compo (1998) who obtain the empirical distribution for the wavelet power spectrum 

as well as for the wavelet cross–spectrum. Even though computationally very efficient, this 

approach has some drawbacks, for example it is applicable only to these two measures and 

it requires specific assumptions for the derivation of the distribution. An alternative to 

this kind of significance test are tests that rely on bootstrapped data. Some authors apply 

nonparametric bootstrap methods, as, e.g., Cazelles et al. (2007). In contrast, in their 

examples with economic data Aguiar-Conraria and Soares (2011b) consider a parametric 

approach and generate new samples by bootstrapping ARMA models for the analyzed 

data, for instance the cycles. We build on the approach proposed by Stoffer and Wall 

(1991) whereby we exploit the state space representation with which the original cycle 

estimates were obtained. In this way, we avoid imposing models for the estimated cycles 

or making additional choices needed for nonparametric methods, as for example selection 

of the block size when resampling blocks of data (see Berkowitz and Kilian, 2000). More 

specifically, we proceed in two steps. In the first one, we obtain bootstrap samples of 

the observations. For that purpose, we first perform bootstrapping on the standardized 

innovations resulting from the estimation of the models described in Section 2 and then 

with the estimated matrices of the state space models and each bootstrap sample of 

standardized innovations we construct a set of observations. In the second step, using each 

of the bootstrap samples of observations we get a set of smoothed cyclical components 

using the Kalman smoother. In wavelet analysis, we resort to the bootstrapped cycles 

when computing the bootstrapped values of the wavelet coherence. For identification of 

the significant regions of coherence, we draw on p–values based on the replicated coherence 

R24Computation of xy,ψ(τ, s) and φxy,ψ(τ, s) is carried out using programs based on the ASToolbox by 

Aguiar-Conraria and Soares (2011a). Mean values of φxy,ψ(τ, s) are obtained with the CircStat Toolbox 

by Berens (2009). For graphical illustration of these measures, we utilize modified programs from the 

toolbox by Grinsted et al. (2008). 
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values.5 

3.4 Results 

The results for the US case are presented in Figures 5 and 6. Figure 5 shows the estimated 

wavelet coherence and phase angle for the IPI cycles acting as business cycle indicators and 

the consumer real wage cycles, whereas Figure 6 contains the corresponding estimation 

results for the IPI cycles and the producer real wage cycles. The left panel of the figures 

refers to the cycles obtained with the STS approach and the right panel corresponds to the 

band–pass cycles. For ease of reference, scales at which the wavelet measures have been 

computed are converted to periods according to the formula p = 2π/ω, where p denotes 

the period and ω is the frequency which is in this case, as mentioned in the previous 

subsection, derived as ω = 2π/s. It should be noticed that the considered periods cover 

all business cycle periodicities, i.e. periods between 1.5 and 8 years. Figures in the upper 

row depict the estimated time–frequency wavelet coherence and phase angle. Low values 

of the coherence are represented by regions not covered by arrows. In the remaining region, 

light areas designating medium values fade into dark areas corresponding to the strongest 

coherence. Areas delimited by the black lines cover coherence values that are significant 

at the 5% level. Values of the time–frequency phase angle are illustrated by arrows. 

Direction of an arrowhead can be related to the phase angle in the unit circle and can be 

thus interpreted as shown in Figure 3. Arrows pointing to the right/left indicate an in– 

phase/anti–phase relationship between the real wage cycle and the business cycle. Arrows 

pointing up/down suggest lagging/leading of the real wage cycle over the business cycle. 

Shaded regions outside the downward and upward sloping lines towards the beginning and 

the end of the sample, respectively, show the COI. The figures in the middle and in the 

lowest part illustrate the phase angle averaged over scales corresponding to the business 

cycle periodicities, and the phase angle averaged over time, respectively. Black lines give 

the 95% confidence bounds for the mean values depicted by dots. 

In Figures 5a and 5d, it is apparent that, irrespective of the decomposition method, 

5For the generation of the bootstrapped cycles, we use the procedures bootsam and bootcomp from 

the SSMMatlab toolbox. Confidence intervals for the mean values of φxy,ψ(τ, s) are calculated with the 

CircStat Toolbox. 
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(a) Wavelet coherence and phase angle: STS (d) Wavelet coherence and phase angle: BP 
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(c) Mean phase angle over time: STS	 (f) Mean phase angle over time: BP 

Figure 5: Wavelet coherence and phase angle: US IPI and US consumer real wage 

cycles based on the STS approach and a band–pass (BP) filter 

Notes: a), d) Coherence ranges from low values (dark areas not covered by arrows) to high values (dark 

areas covered by arrows). Shaded regions outside the downward and upward sloping lines represent 

the COI. Black contours show significance at the 5% level based on p–values calculated with 1000 

bootstrapped cycles. Arrows designate the phase angle (pointing right/left: in–phase/anti–phase, 

pointing up/down: lag/lead of the consumer real wage cycle). b), c), e), f) Points depict the mean 

values. Black lines correspond to their 95% confidence intervals. 

the strongest and statistically significant coherence between the consumer real wage cycle 

and the IPI cycle can be observed between 1965 and 1985 and from about 2000 on. Arrows 
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pointing to the right between 1965 and 1985 reveal a procyclical pattern of the consumer 

real wage in this time interval. The greatest contribution to this behavior comes from 

the components with periodicities between approximately 3 and 8 years. In addition, the 

relevance of shorter period components decreases over time. After 2000, the consumer real 

wage becomes countercyclical at rather higher periods. The strongest coherence occurs at 

periodicities between 6 and 8 years. In contrast, lower periods are associated with a rather 

procyclical pattern. In the entire time interval, at least for significant coherence values, 

the consumer real wage is leading the business cycle. These observations can be confirmed 

by the mean phase averaged over scales (see Figures 5b and 5e). It takes negative values in 

the entire time span with an exception of single outlying positive values. However, we do 

not interpret these outliers as well as other mean values falling into the interval from 1985 

to 1995 as they are not informative due to very low insignificant coherence in this time 

span. From 1965 to 1985 the mean phase angle values lie between 0 and −π/2, thereby 

indicating a clear–cut procyclical pattern. Towards the end of the sample, the mean 

values fall slightly below −π/2 which is the consequence of an important contribution of 

countercyclical low–frequency components of the IPI cycle and the consumer real wage 

cycle. It is also worth noting that, as is evident from Figures 5c and 5f, the components 

with periodicities above 2 years are on average in–phase, whereas the shorter components 

of the IPI cycle and the real wage cycle exhibit on average an anti–phase relation. 

As regards the producer real wage, we find similar time–frequency behavior to the 

case of the consumer real wage (see Figures 6a and 6d). The only difference is that for 

the producer real wage we can detect more pronounced significant coherence between 

1985 and 2000. It can be observed at lower periodicities, between about 3.5 to 4.5 years 

starting from 1985 and between 1.5 and 3 years until 2000. Change in the direction of 

arrows in the mid–1980’s at almost all periods suggests a change from an in–phase into an 

anti–phase relation. Figures 6b and 6e show this trend explicitly. Taking all periods into 

account, the producer real wage becomes countercyclical in the early 1980’s. In Figures 6c 

and 6f, it is evident that the components with periodicities up to approximately 4 years 

are responsible for the anti–phase behavior whereas the components between 4 and 7 years 

induce on average a procyclical behavior of the producer real wage. Across all periods 

and times, the producer real wage leads the business cycle. 
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(a) Wavelet coherence and phase angle: STS (d) Wavelet coherence and phase angle: BP 
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Figure 6: Wavelet coherence and phase angle: US IPI and US producer real wage 

cycles based on the STS approach and a band–pass (BP) filter 

Notes: a), d) Coherence ranges from low values (dark areas not covered by arrows) to high values (dark 

areas covered by arrows). Shaded regions outside the downward and upward sloping lines represent 

the COI. Black contours show significance at the 5% level based on p–values calculated with 1000 

bootstrapped cycles. Arrows designate the phase angle (pointing right/left: in–phase/anti–phase, 

pointing up/down: lag/lead of the consumer real wage cycle). b), c), e), f) Points depict the mean 

values. Black lines correspond to their 95% confidence intervals. 

Summing up, both US real wages seem to have a similar scheme of comovements with 

the business cycle. They are leading the business cycle in the entire time interval and at all 
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periodicities. Until the mid–1980’s, a procyclical pattern predominates. The significant 

coherence comes from the components in the range of middle and higher business cycle 

periodicities. Thereafter, the real wages become less procyclical and towards the end of 

the series even anticyclical. 

The findings for Germany are summarized in Figures 7 and 8. As for the consumer 

real wage, Figures 7a and 7d show that the strongest coherence occurs until 1980 at pe­

riods up to about 4 years. From the mid–1980’s to the mid–1990’s, components with 

higher periodicities up to about 7 years are associated with strong, statistically signifi­

cant coherence. Afterwards, the importance of lower components with lower and middle 

periodicities decreases. In contrast, the ones from the upper range of the business cycle 

periodicities make the major contribution to the overall coherence in this time interval. 

Arrows pointing up at all times and almost all periodicities indicate a lagging behavior 

of the consumer real wage in Germany. Significant values of the mean phase above π/2 

illustrated in Figures 7b and 7e can be an evidence for a countercyclical consumer real 

wage in the considered time span. This anti–phase behavior is especially attributed to 

the components with periodicities below 6 years. At higher periodicities, we can identify 

a less anticyclical and even a slightly procyclical pattern. 

After an inspection of Figures 8a and 8d, it becomes clear that despite of the similar 

significance regions for the wavelet coherence as in the case of the consumer real wage, 

the results for the producer real wage with respect to the lead–lag classification are not 

as homogeneous. Until the mid–1980’ and from 2000 on, the producer real wage leads 

the business cycle whereas in the interval between 1985 and 2000, a lagging behavior of 

the producer real wage emerges (see Figures 8b and 8e). On average, the leading scheme 

can be assigned to the components up to approximately 4 years. In contrast, components 

with higher periodicities are responsible for the lagging scheme (see Figures 8c and 8f). 

In addition, we can detect an anti–phase relationship between the producer real wage 

and the business cycle across almost all times and periodicities, except for time periods 

prior to 1975. Analogous to the case of the consumer real wage, the negative relationship 

between the producer real wage cycle and the business cycle vanishes for periods above 6 

years. 

To sum up, German real wages turn out to be countercyclical in almost the entire 
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(a) Wavelet coherence and phase angle: STS (d) Wavelet coherence and phase angle: BP 
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Figure 7: Wavelet coherence and phase angle: German IPI and German con­

sumer real wage cycles based on the STS approach and a band–pass 

(BP) filter 

Notes: a), d) Coherence ranges from low values (dark areas not covered by arrows) to high values (dark 

areas covered by arrows). Shaded regions outside the downward and upward sloping lines represent 

the COI. Black contours show significance at the 5% level based on p–values calculated with 1000 

bootstrapped cycles. Arrows designate the phase angle (pointing right/left: in–phase/anti–phase, 

pointing up/down: lag/lead of the consumer real wage cycle). b), c), e), f) Points depict the mean 

values. Black lines correspond to their 95% confidence intervals. 

18
 



(a) Wavelet coherence and phase angle: STS (d) Wavelet coherence and phase angle: BP 
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Figure 8: Wavelet coherence and phase angle: German IPI and German producer 

real wage cycles based on the STS approach and a band–pass (BP) filter 

Notes: a), d) Coherence ranges from low values (dark areas not covered by arrows) to high values (dark 

areas covered by arrows). Shaded regions outside the downward and upward sloping lines represent 

the COI. Black contours show significance at the 5% level based on p–values calculated with 1000 

bootstrapped cycles. Arrows designate the phase angle (pointing right/left: in–phase/anti–phase, 

pointing up/down: lag/lead of the consumer real wage cycle). b), c), e), f) Points depict the mean 

values. Black lines correspond to their 95% confidence intervals. 

time span. As regards their behavior across different periodicities, the anti–phase relation 

is not present any more for higher periodicities. German consumer real wage is lagging 

19
 



the business cycle at all times, as opposed to the producer real wage which is leading the 

business cycle from the mid–1980’s to 2000. Similarly to the US case, the results remain 

robust independent of the decomposition method. All these observations resemble the 

findings in Marczak and Beissinger (2012) who apply the concept of the phase angle in 

the frequency domain to investigate the cyclical behavior of real wages in Germany in the 

whole economy. 

A comparison of the results for the USA and Germany unveils the differences in the 

lead–lag behavior of real wages in both countries. Real wages in the USA are both leading 

the business cycle whereas in Germany the lead–lag relation with the business cycle differs 

between these real wage series. The consumer real wage in Germany reacts with delay to 

the actual economic situation. In contrast, the producer real wage is, at least for the most 

part of the considered time interval, leading the business cycle. Both countries also differ 

with respect to the regions with the strongest and statistically significant coherence. In the 

USA, they are observed from the mid–1960’s to the mid–1980’s and after 2000, whereas 

in the German case the most pronounced comovements are associated with time periods 

until the late 1970’s and between about 1990 and 2000. Moreover, the classification of real 

wages as being in–phase or in anti–phase with the business cycle is differently distributed 

across periods in both countries. Apart from this discrepancy, we detect a similar overall 

tendency present in both countries – from a procyclical or an acyclical behavior prior to 

1980 to an unambiguously countercyclical behavior thereafter. 

Our results suggest that changes occurring over time could serve, along with differ­

ences in the used price deflators, in methods for measurement of comovements etc., as 

an additional possible explanation for differences in the comovement patterns detected in 

studies on real wage cyclicality. See Abraham and Haltiwanger (1995) for the discussion 

of different outcomes of analyses based on the US data. As for Germany, most of the 

few existing studies find that real wages are procyclical (see, e.g., Brandner and Neusser, 

1992; Anger, 2007) or acyclical (see Pérez, 2001) which, generally speaking, contradicts 

the evidence from our analysis. However, it is worth noting that in these works the ex­

amined time intervals are usually shifted to the past by several years relative to the time 

interval considered in this article. Since, as shown before, the real wages seemed to exhibit 

a rather acyclical or procyclical behavior in the more distant past, this fact could explain 
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the contrasting outcomes of this article and most of the studies dealing with the German 

data. 

4 Summary and Conclusions 

This article sheds new light on the cyclical behavior of the consumer and producer real 

wages in the USA and Germany. As a tool to investigate comovements, we propose to use 

wavelet analysis enabling us to gain insights that cannot be provided by standard time– 

domain or spectral techniques. Wavelet methods can reveal whether the comovement 

pattern between components with particular periodicities is subject to any changes or 

whether it remains stable in the course of time. More specifically, we apply the concepts 

of wavelet coherence and wavelet phase angle. In order to establish the general tendency 

of the in–phase or anti–phase relation and the lead–lag relation between real wages and 

the business cycle across time periods and across different time horizons, we additionally 

interpret the mean phase angle over time and over business cycle periodicities, respectively. 

To obtain a robust and reliable picture on cyclicality of real wages, we apply two model– 

based methods for extraction of the cyclical components of the underlying time series: the 

structural time series (STS) approach and the ARIMA–model–based (AMB) approach 

combined with the canonical decomposition and a band–pass filter. 

The analysis of the wavelet coherence and phase angle shows that the cyclicality in both 

countries is of a somewhat different nature. In the USA, the strongest and statistically 

significant coherence falls within the time interval from the mid–1960’s to the mid–1980’s 

and after 2000. On the contrary, the strongest and statistically significant coherence in 

Germany mainly pertains to the years until the late 1970’s and the time period between 

1990 and 2000. Furthermore, both US real wages are leading the business cycle in the 

entire time span and at most business cycle periodicities. In Germany, on the other hand, 

the outcomes depend on whether the consumer or the producer real wage is examined. For 

the consumer real wage, we find a lagging behavior at all times as well as at all business 

cycle periodicities. The producer real wage lags the business cycle only between 1985 

and 2000 and only at the periodicities up to 4 years. Similarities between both countries 

emerge if we focus on the identification of the in–phase or anti–phase movements of real 

wages with the business cycle. Until 1980, real wages behave acyclically or procyclically 
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and they change their behavior to an anticyclical one afterwards. The detected cyclicality 

patterns for both real wages and both countries remain robust regardless of the methods 

used for the extraction of the cycles. 
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Appendix 

A Data Selection 

In our analysis, we use raw quarterly data between 1960.Q1 and 2011.Q3 for the USA 

and between 1970.Q1 and 2011.Q3 for Germany. The US production index refers to 

the manufacturing sector after the SIC classification (source: Board of Governors of 

the Federal Reserve System, series: G.17). We obtained the US real wage series by 

deflating nominal hourly wages of production and nonsupervisory employees in manu­

facturing sector (source: FRED Economic Data, series ID: AHEMAN) with the con­

sumer price index (source: FRED Economic Data, series ID: CPIAUCNS) or the pro­

ducer price index (source: FRED Economic Data, series ID: PPIIDC). As for Ger­

many, we use the production index in industry without construction that has already 

been linked over the annual average in 1991 (source: Deutsche Bundesbank, series ID: 

BBDE1.M.DE.N.BAA1.A2P200000.G.C.I05.L). Since, in contrast to the US case, nomi­

nal hourly wage series is not directly available, we create it by dividing the data on gross 

wages and salaries by the data on working hours, both corresponding to industry with­

out construction. Prior to this, we link in both cases data sets up to 1991.Q4 referring 

to West Germany and from 1991.Q1 on referring to unified Germany over the annual 

averages in 1991. The source for the West German series is Statistisches Bundesamt, 

Fachserie 18, Reihe S.27 (revised quarterly results), whereas the source for the German 

series is Statistisches Bundesamt, GENESIS-Onlinedatenbank. The nominal hourly wages 

are in the next step deflated with the consumer price index (source: Deutsche Bundes­

bank, series ID: UUFB99) or the producer price index (source: Deutsche Bundesbank, 

series ID: UUZH99). 
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