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Abstract

A brief summary and the user instructions are presented for the program
Trace (“Trend And Cycle Estimation”).

Trace is a program for the estimation of trends, cycles and even season-
ally adjusted series. The filters used by the program are fixed Arma filters of
three types. First, low–pass filters to estimate trends which are the two–sided
forms of the well known Butterworth filters of electrical engineering, like the
Hodrick–Prescott filter. Second, band–pass filters based on Butterworth filters
to estimate cycles. Third, trend-cycle filters which are the finite versions of the
Wiener–Kolmogorov filters corresponding to the trend in a canonical decom-
position of an airline model. Assigning appropriate values to the parameters,
these last filters can also be used for seasonal adjustment.

An important feature of the program is that, when a model for the input
series is available, it can be used to improve the performance of the filter at both
ends of the series. Thus, the program is an alternative to the recent X12-Arima
program of the U.S. Bureau of the Census. However, the Arma filters used by
Trace, while capable of closely approximating an extremely wide range of gain
functions, require many less parameters, forecasts and backcasts than the Ma
filters used by X12-Arima.

The main purpose of Trace is the estimation of trends, with various
degrees of smoothness, and business cycles. To this end, it is strongly rec-
ommended that the program be always used as a second step in a two–step
procedure. The first step in this procedure should consist of the estimation
of the trend–cycle component by means of the application of a model–based
method, like the one implemented in programs Tramo and Seats1. In this
way, undesirable effects, like the generation of spurious cycles, are avoided.

The program is structured so as to be used both for in–depth analysis of
a few series or for automatic routine applications to a large number of series.

1Tramo and Seats are two programs for time series analysis developed by Vı́ctor Gómez
and Agust́ın Maravall, which are freely available at the Internet address http://www.bde.es
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1 Linear Time Invariant Filters

Given an infinite time series {zt}, a linear time invariant filter that produces a
new time series {yt} is a transformation of the form

yt =
∞∑

j=−∞
hjzt−j,

where
∑∞

j=−∞ |hj| < ∞. In terms of the backward shift operator, defined by
Bzt = zt−1, the filter can be expressed more compactly as

yt = H(B)zt =
∞∑

j=−∞
hjB

jzt, (1)

where H(B) =
∑∞

j=−∞ hjB
j and Bj = B(Bj−1). The filter is said to be sym-

metric if h−j = hj for all j = 1, 2, . . ., in which case H(B) can be written
as

H(B) = h0 +
∞∑

j=1

hj(B
j + B−j).

The filter is called causal or backward–looking if hj = 0 for j < 0. In that case,
the filter output depends only on the present and past of the input series.

Every stationary process {zt} has a representation in terms of periodic
stochastic components that resembles the representation of a periodic function
as a Fourier series. This is the so called spectral representation, which mathe-
matically is expressed as

zt =

∫ π

−π

eitxdY (x). (2)

Here, {Y (x)} is a stochastic process with independent increments, continuous on
the right, and i =

√−1. Heuristically,the previous integral can be interpreted as
the limit in mean squared of sums of harmonics with stochastic coefficients. To
see the effect of the linear filter (1) on the spectral representation (2), consider
the following simple example. Let zt be an elementary complex exponential
function

zt = eitx = cos(tx) + isin(tx).

Then, if this is passed through the filter, it becomes

yt = H(B)eitx =
∞∑

j=−∞
hje

i(t−j)x

=

{ ∞∑
j=−∞

hje
−ijx

}
eitx.
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Thus, the effects of the filter are summarized by the complex–valued function

Ĥ(x) =
∞∑

j=−∞
e−ijxhj, (3)

which is the Fourier transform of the sequence (. . . , h−1, h0, h1, . . .). Note that
Ĥ(x) is obtained by replacing B in H(B) with e−ix. In the general case, it can
be shown that the spectral representation of the transformed series yt is

yt =

∫ π

−π

Ĥ(x)eitxdY (x). (4)

The function Ĥ(x) is usually called the frequency response function of the filter.
Like in the previous example, equation (4) shows intuitively the effect of the
filter H(B) on the input series {zt}. The effect is twofold on the harmonics
at frequency x ∈ [−π, π]. First, the amplitudes are multiplied by the modulus
G(x) = |Ĥ(x)| of the complex number Ĥ(x) and second, there is a shift effect
measured by the argument φ(x) of Ĥ(x). The functions G(x) and φ(x) are
usually called gain and phase function of the filter, respectively. Note that if
the filter is symmetric, there is no phase effect, because the number Ĥ(x) is a
real number due to the cancellation of the sine functions in the expression (3).
This feature makes symmetric filters desirable in all practical applications.

If the phase function φ(x) is divided by the frequency x, the phase de-
lay function τ(x) = φ(x)/x is obtained, which is a measure of the time delay
experienced by the input zt in passing through the filter.

Given the autocovariances γ(j) =E(zt+jzt) of a stationary process {zt}
which follows an ARMA model, the spectrum of the process f(x) is defined
as the Fourier transform of the covariance sequence (. . . , γ(−1), γ(0), γ(1), . . .),
that is

f(x) =
1

2π

∞∑
j=−∞

γ(j)e−ijx,

assuming
∑∞

j=−∞ |γ(j)| < ∞. For example, for a white noise series {at} with

Var(at) = σ2
a, the spectrum is f(x) = σ2

a/2π. The autocovariances γ(j) are
given by the inverse Fourier transform of f(x)

γ(j) =

∫ π

−π

eitxf(x). (5)

If fz(x) is the spectrum of the series {zt} in (1), then the spectrum fy(x)
of the filtered series {yt} is given by the formula

fy(x) = |Ĥ(x)|2fz(x), x ∈ [0, π].
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As an application of this formula, suppose that the series {zt} follows the ARMA
model φ(B)zt = θ(B)at, where Var(at) = σ2

a. Then, the series {zt} can be seen
as the result of applying the filter H(B) = θ(B)/φ(B) to the white noise series
{at}. Therefore, the spectrum is

f(x) =
1

2π

θ(e−ix)θ(eix)

φ(e−ix)φ(eix)
σ2

a =
1

2π

| θ(e−ix) |2
| φ(e−ix) |2σ2

a.

Note that if j = 0 en (5), we obtain the variance of the process expressed as an
integral of the spectrum. This can be seen as how the stochastic components
associated with the different frequencies contribute to the variance of the series.

Traditionally, filters have been designed in terms of its desired effect on a
certain band of frequencies. So, a low-pass filter is a filter which, ideally, has a
gain function equal to one for the frequencies near to zero and a value of zero
for all the other frequencies. More generally, a band-pass filter for the band
[x1, x2] is a filter such that the gain function G(x) = 1 for x ∈ [x1, x2] and is
zero otherwise. Note that frequency and period are related by the well known
formula x = 2π/T , where x is the frequency and T is the period.

1.1 Arma Filters

Arma (auto-regressive moving-average) filters are also called I.I.R. (infinite
impulse response) filters in electrical engineering. Letting zt be the input of
Arma filter, the output yt is obtained recursively by means of an expression of
the form

yt + b1yt−1 + · · ·+ bnyt−n = a0zt + a1zt−1 + · · ·+ amzt−m.

Using the backshift operator B, the previous expression can be written more
concisely as yt = H(B)zt, where

H(B) =
a0 + a1B + · · ·+ amBm

1 + b1B + · · ·+ bnBn
. (6)

It is assumed that the polynomial 1+b1B + · · ·+bnB
n in the backshift operator

has all its roots outside the unit circle. This last condition ensures that the
function H(B) can be developed as a convergent series. That is, there exist
coefficients hj, j = 0, 1, . . . such that the equality H(B) =

∑∞
j=0 hjB

j holds
(hence the name I.I.R. filters) and the series is convergent.

If the degree of the numerator in (6) is zero, we get a pure autoregres-
sive (Ar) filter, and if the degree of the denominator is zero, the filter is a
pure moving-average (Ma) filter. These last filters are also called F.I.R. (finite
impulse response) filters in electrical engineering.
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Arma filters are causal filters which have a non–zero phase effect because
they are not symmetric. Besides, it can be shown that Arma filters that are
not pure Ma filters have a non–linear phase function, which means that the
phase delay is not constant. On the contrary, Ma filters have a linear phase
function.

An obvious way to obtain a symmetric filter from an Arma filter H(B)
is to form the product H(F )H(B), where F is the forward shift operator, Fzt

= zt+1. These two–sided forms of Arma filters are the ones used by program
Trace.

As a simple example, consider the filter H(B) = k/(1 + bB). Then, its
two–sided form is the filter H(F )H(B) = k2/(1 + b2 + b(B + F )).

1.2 The Airline Trend–cycle Filter

In this section, we consider the so–called canonical model–based decomposition.
This model–based method constructs models for the components from the model
specified for the aggregate series. The basic references are Cleveland and Tiao
(1976), Box, Hillmer and Tiao (1978), Burman (1980), Hillmer and Tiao (1982),
Bell and Hillmer (1984), and Maravall and Pierce (1987).

Suppose that the observed series {zt} follows the invertible Arima model

φz(B)zt = θz(B)at, (7)

where φz(B) is a polynomial in B which may have unit roots, and {at} is an
i.i.d. sequence of N(0, σ2

a) random variables. Suppose further that the usual
assumption is made of a decomposition into orthogonal unobserved components

zt = pt + st + wt,

where pt is the trend–cycle, st is the seasonal and wt is the irregular component.
The decomposition can in fact be additive or multiplicative. Since the latter
can be transformed into the former by taking logarithms, we will suppose in
what follows that the decomposition is additive.

It is assumed that the components also follow Arima models, which are
determined by the autoregressive polynomial φz(B) and, in particular, its unit
root part. This is because each unit root in φz(B) induces an infinite peak in
the pseudospectrum of the series. For example, suppose a quarterly series with
a seasonal difference ∇4 = (1 − B)(1 + B + B2 + B3) in φz(B). Then, the
factor 1−B induces an infinite peak at the zero frequency and the other factor
1 + B + B2 + B3 induces infinite peaks at the seasonal frequencies.
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However, the assignment of the different roots in φz(B) is not enough
to identify models for the components. The identification is achieved by im-
posing certain restrictions on the orders of the moving average parts and the
so–called “canonical decomposition”. This last decomposition consists of elim-
inating from pt and st as much white noise as possible and assigning it to the
irregular wt. In this way, the variance of this last component is maximized and,
on the contrary, the trend–cycle and seasonal components are made as stable
as possible.

When the model (7) is the airline model

∇∇szt = (1 + θB)(1 + ΘBs)at, (8)

where ∇ = 1− B, ∇s = 1− Bs and s is the number of observations per year,
the application of this method yields the following models for the components

∇2pt = (1 + αB)(1 + B)bt (9)

S(B)st = θs(B)ct,

where S(B) = 1+B + · · ·+Bs−1 and θs(B) is a non–invertible moving average
polynomial of order s− 1. See Maravall (1995). Note that ∇s = ∇S(B).

When the series is stationary and a complete realization {. . . , zt−1, zt, zt+1,
. . .} of the process is known, the Wiener–Kolmogorov filters to optimally esti-
mate the components are given by the ratio of the covariance generation func-
tion of the component and that of the series. By the results of Bell (1984),
the Wiener–Kolmogorov filter can also be applied in the non–stationary case
when an infinite realization is known. Gómez (1999) has shown that for the
finite non–stationary situation Wiener–Kolmogorov filtering, Kalman filtering,
and penalized least squares smoothing are equivalent.

Because in this manual we focus our interest on the trend–cycle compo-
nent, suppose that the model for pt given by the canonical decomposition is

φp(B)pt = θp(B)bt.

Then, the estimator p̂t of pt based on the infinite sample is p̂t = H(B)H(F )zt,
where H(B)H(F ) is the Wiener–Kolmogorov filter,

H(B) =
σb

σa

θp(B)φz(B)

φp(B)θz(B)
,

and σ2
b = Var(bt).

In the case of the airline model (8), since pt follows tha model (9), after
some manipulations, it is obtained that

H(B) =
σb

σa

(1 + αB)(1 + B)S(B)

(1 + θB)(1 + ΘBs)
. (10)
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The filter H(B)H(F ) is doubly–infinite symmetric, but convergent be-
cause the model is assumed to be invertible. Thus, this last filter can be ex-
pressed as H(B)H(F ) = h0 +

∑∞
j=1 hj(B

j + F j).

The parameters α and σb/σa of expression (10) can be easily computed
from the formulae

σb

σa

=
(1 + θ)(1 + Θ)

2(1 + α)s

α =
1− L−√1− 2L

L

L =
2θ

(1 + θ)2
+

2Θs2

(1 + Θ)2
− s2 + 2

6
,

where s = 12 for monthly and s = 4 for quarterly series. The proof of this
result can be seen in Gómez and Bengoechea (1998). Note that the filter values
α and σb/σa depend only on the parameters θ and Θ.

1.3 Butterworth Filters and Band–pass Filters Derived
From Them

We start by considering the filter proposed by Hodrick and Prescott (1980),
hereafter referred to as the HP filter. It is well known (see, for example, King
and Rebelo, 1989), that the HP filter admits a signal extraction interpretation.
Thus, the filter is obtained as the filter that corresponds to the estimator of st

in the signal–plus–noise model

zt = st + nt, (11)

under the assumption that the signal st follows the model ∇2st = bt and {bt} is
a white noise sequence with mean zero and variance 1, independent of the white
noise sequence {nt}. Hodrick and Prescott (1980) suggested with great success
the value λ = Var(nt) = 1600 when zt is a quarterly series. Because st and zt

are nonstationary, under assumption A of Bell (1984), the Wiener–Kolmogorov
filter can be applied to a infinite realization of zt to obtain the minimum mean
squared error estimator ŝt of the signal st. The estimator ŝt is given by an
infinite symmetric filter HHP (B,F )

ŝt = HHP (B, F )zt = ν0zt +
∞∑

k=1

νk(B
k + F k)zt. (12)

The weights νt can be obtained from the signal extraction formula

HHP (B, F ) = 1/(1 + λ(1−B)2(1− F )2). (13)
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The frequency response function ĤHP (x) of the filter HHP (B,F ) is ob-
tained by replacing B with e−ix in (13). After some manipulation, we get

ĤHP (x) =
1

1 +
(

sin(x/2)
sin(xc/2)

)4 , (14)

where xc is the frequency that corresponds to ĤHP (x) = 1/2 and λ = 1/
(16sin4(xc/2)). Because (14) is a real number, it coincides with the gain func-
tion of the filter and there is no phase effect. In the case of the HP filter, λ =
1600 implies xc = .1583, which corresponds to a period of 9.9 years.

1.3.1 Butterworth Filters

Expression (14) is a special case of the squared gain of a Butterworth filter
based on the sine function (BFS), which is given by

|G(x)|2 =
1

1 +
(

sin(x/2)
sin(xc/2)

)2d
, (15)

where |G(xc)|2 = 1/2. These filters are low–pass filters that depend on two
parameters, d and xc, and, if xc is fixed, the effect of increasing d is to make
the fall sharper. See figure 1. They are autoregressive filters of the form H(B)
= 1/θ(B), where θ(B) = θ0 + θ1B + · · · + θdB

d and |G(x)|2 = H(e−ix)H(eix).
It can be shown that the denominator in (13) can be factored as θ(B)θ(F ),
where θ(B) is a polynomial in B of degree 2. Thus, the filter HHP (B, F ) is a
two–sided form of a BFS, because HHP (B, F ) = H(B)H(F ), where H(B) =
1/θ(B).

Butterworth filters are of two types. The first one is based on the sine
function and has already been described (BFS), whereas the second one is based
on the tangent function (BFT). See Otnes and Enochson (1978).

The squared gain function of a BFT is given by (15) with the “sin” replaced
with “tan”. Thus, the squared gain function of a BFT is

|G(x)|2 =
1

1 +
(

tan(x/2)
tan(xc/2)

)2d
, (16)

where, like in the case of a BFS, |G(xc)|2 = 1/2. The effect of increasing d is
also to make the fall sharper, as with BFS.

It is a remarkable fact that two–sided BFS and BFT can be obtained as
best linear estimators, in the mean squared sense, of the signal in models like

7
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Fig1. : Squared Gain of Butterworth Filters

(11). The decomposition is given by an IMA(d, 0) signal plus white noise for
BFS, and by an IMA(d, d) signal plus white noise for BFT; in this last case the
MA polynomial is (1+B)d. Thus, for example, when d = 1, the BFS yields the
“random walk plus noise” model, and the BFT its canonical version (because
there is a spectral zero at frequency x = π). When d = 2, as we saw earlier, the
BFS yields the HP filter. For a proof of these results, see Gmez (1998).

Given the previous model–based interpretation of Butterworth filters, it
can be shown that the Wiener–Kolmogorov filter HBFS which defines a two–
sided BFS is

HBFS(B, F ) =
1

1 + λ(1−B)d(1− F )d
(17)

and that HBFT (B, F ) for a two–sided BFT is

HBFT (B, F ) =
(1 + B)d(1 + F )d

(1 + B)d(1 + F )d + λ(1−B)d(1− F )d
(18)

where λ = σ2
n/σ

2
b . The denominators in (17) and (18) can be factored in the

form θ(B)θ(F )σ2
a, where ∇dzt = θ(b)at is the model followed by zt in (11) and

Var(at) = σ2
a.
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1.3.2 Band–pass Filters

Band–pass filters are filters that pass only those components whose frequencies
are in a pre–selected band. These filters can be obtained from low–pass filters
by means of a transformation. See Oppenheim and Schaffer (1989), pp. 430–
434. Let [xp1 , xp2 ], where xp1 ≥ 0 and xp1 < xp2 ≤ π, be the pass band. Then, a
suitable transformation is z = −s(s−α)/(1−αs), where α = cos((xp2 +xp1)/2)/
cos((xp2 − xp1)/2). It can be shown that −1 < α < 1.

If we apply the previous transformation to a two–sided BFS, then the
following band–pass filter Hpbs(B, F ) is obtained

Hpbs(B, F ) =
(1− αB)d(1− αF )d

(1− αB)d(1− αF )d + λ(1− 2αB + B2)d(1− 2αF + F 2)d
,

which is the Wiener–Kolmogorov filter to estimate the signal st in model (11)
when st follows the model (1 − 2αB + B2)dst = (1 − αB)dbt and λ = σ2

n/σ
2
b .

Because −1 < α < 1, we can write α = cosθ for a certain θ ∈ [0, π], so that the
polynomial 1− 2αB + B2 has two complex conjugate roots of unit modulus.

If the previous transformation is applied to a two–sided BFT, then the
following band–pass filter Hpbt(B,F ) is obtained

Hpbt(B, F ) =
(1−B2)d(1− F 2)d

(1−B2)d(1− F 2)d + λ(1− 2αB + B2)d(1− 2αF + F 2)d
,

which is the Wiener–Kolmogorov filter to estimate the signal st in model (11)
when st follows the model (1 − 2αB + B2)dst = (1 − B2)dbt and λ = σ2

n/σ
2
b .

Note that in this case the pseudospectrum of the signal is canonical, because it
is zero at both the zero and the π frequencies.

The denominators of Hpbs(B,F ) and Hpbt(B, F ) can be factored as θ(B)
×θ(F )σ2

a.

1.3.3 Design of Butterworth Filters

A direct way to design BFS or BFT consists of specifying the frequency xc

where the squared gain function is equal to 1/2, or the noise to signal ratio λ
= σ2

n/σ2
b , and the degree of the filter d in (15).

To design a two–sided BFS, let δ1, δ2, xp and xs be the specification
parameters, so that the gain function G(x), which is the squared of the gain
function of the corresponding BFS, should verify 1−δ1 < G(x) ≤ 1 for x ∈ [0, xp]
and 0 ≤ G(x) < δ2 for x ∈ [xs, π]. Here, [0, xp] is the pass band, [xs, π] is the
stop band, [xp, xs] is the transition band, and δ1 and δ2 are the tolerances. Note
that the pass band includes 0 because Butterworth filters are low–pass filters.
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Because sin2(x/2) = tan2(x/2)/(1 + tan2(x/2)), we can obtain d and xc

by solving the equations

1 +

(
tan2(xp/2)

1 + tan2(xp/2)
× 1 + tan2(xc/2)

tan2(xc/2)

)d

=
1

1− δ1

1 +

(
tan2(xs/2)

1 + tan2(xs/2)
× 1 + tan2(xc/2)

tan2(xc/2)

)d

=
1

δ2

.

First, d is obtained. Since d has to be an integer in (15), if the value of d
obtained by solving the previous equations is not an integer, the nearest integer
is selected. Then, the value of xc is obtained which corresponds to this integer
d in the earlier equations.

The equations to be solved for the design of a two–sided BFT are

1 +

(
tan(xp/2)

tan(xc/2)

)2d

=
1

1− δ1

1 +

(
tan(xs/2)

tan(xc/2)

)2d

=
1

δ2

.

The way to proceed is like for two–sided BFS.

1.3.4 Design of Band–pass Filters

If we want to design a two–sided band–pass filter and the specifications are
given by means of the parameters δ1, δ2, xp,1, xp,2, xs,1 and xs,2, so that the
gain function G(x) should verify 1 − δ1 < G(x) ≤ 1 for x ∈ [xp,1, xp,2] and
0 ≤ G(x) < δ2 for x ∈ [0, xs1] and x ∈ [xs,2, π], we may proceed as follows.
First, let xp = xp,2 − xp,1 and xs = xs,2 − xp,1 and design a low–pass filter with
the specifications parameters δ1, δ2, xp and xs. Then, apply the transformation
of the previous section to this low–pass filter to obtain the band–pass filter.

Note that we have not used xs,1 in the procedure we have just described
to design a band–pass filter. We have implicitly assumed that xs,1 is the sym-
metrical point of xs,2 with respect to (xp,1 + xp,2)/2.

1.4 Finite Versions of Arma Filters Which Admit a Model–
based Interpretation

Many Arma filters admit a model–based interpretation. For example, we have
seen earlier that the two–sided forms of Butterworth filters based on the sine and
the tangent function are low–pass filters which can be obtained as the Wiener–
Kolmogorov filters to estimate the signal st in the signal–plus–noise model
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(11) when st follows certain models. However, Wiener–Kolmogorov filters are
doubly–infinite symmetric filters and a complete realization {. . . , z−1, z0, z1, . . . , }
is required for their application. These filters are of the form H(B)H(F ) =
h0 +

∑∞
j=1 hj(B

j + F j), where the series is convergent because the model for
the series zt is assumed to be invertible.

In the more real situation, in which only a finite observed series is available
z = (z1, . . . , zN)′, the usual practice consists of applying the same filter, but
with the unknown observations replaced by forecasts or backcasts. That is, one
computes

ŝt = h0ẑt +
∞∑

j=1

hj(ẑt−j + ẑt+j),

where ẑs is equal to zs if 1 ≤ s ≤ N or else it is a forecast or backcast. To
compute the estimator ŝt based on the finite sample, any of the three equiva-
lent algorithms described in Gmez (1999) can be used. The simplest of these
algorithms is probably that based on Tunnicliffe Wilson’s algorithm applied as
described by Burman (1980).

The finite version of Arma filters so obtained is no longer time invariant.
The filtered series is of the form ŝt =

∑N
t=1 hjtzj and the weights hjt depend

on the date t as well as the lead/lag index j. The finite filter can behave very
differently from the infinite filter at both ends of the series and this fact should
be borne in mind.

If the model followed by the series is very different from the model which
defines the filter, the behavior of the finite filter can be very poor. This is
particularly true for band–pass filters, where the model implied by the filter is
very seldom, if ever, encountered in practice.

1.5 Arma filters–Arima

Suppose we are interested in applying one of the filters of the previous sections,
which admits a model–based interpretation, to a certain series zt to estimate
trends or business–cycles. Let the process {zt} follow the Arima model φ(B)zt

= θ(B)at. In general, this model will be different from the models implied by
the filters. The question then naturally arises as to whether it is possible to use
this model in order to improve the performance of the filter at both ends of the
series.

An algorithm to implement the filter which uses the model followed by
the series zt can be obtained as follows. Let the filter be H(B)H(F ), where
H(B) = γ(B)/β(B). Suppose first that a complete realization of the process
{zt} is known and let {xt} and {yt} be the filtered series xt = H(F )H(B)zt

and yt =H(B)zt, respectively. Then, using the Arima model for zt and the
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definition of H(B), it is easy to verify that yt follows the model φ(B)β(B)yt

= θ(B)γ(B)at, where the at are the innovations of zt. This, together with
the fact that the series zt also follows the backward model φ(F )zt = θ(F )vt,
implies, after projecting onto the finite sample z = (z1, . . . , zN)′, the relations
φ(B)β(B)yt = 0, t ≥ N + q + a + 1, and φ(F )zt = 0, t ≤ −q, where q is the
degree of θ(B) and a is the degree of γ(B). Let p and b be the degrees of φ(B)
and β(B). Then, the algorithm is as follows:

1. Solve the system

β(B)yt = γ(B)zt t = −q + 1, . . . , p− q

φ(F )yt = 0 t = −q − b + 1, . . . ,−q

where q+a backcasts are needed: ẑ−q−a+1, . . . , ẑ0. For t = p−q+1, . . . , N+
q+2a, obtain yt from the recursion β(B)yt = γ(B)zt, where q+2a forecasts
are needed: ẑN+1, . . . , ẑN+q+2a.

2. Solve the system

β(F )xt = γ(F )yt t = N + q + a− b− p + 1, . . . , N + q + a

φ(B)β(B)xt = 0 t = N + q + a + 1, . . . , N + q + a + b

For t = N + q + a − b − p, . . . , 1, obtain xt from the recursion β(F )st =
γ(F )yt.

Note that the previous algorithm is similar to that proposed by Tunnicliffe
Wilson, as applied by Burman (1980). If β(B) = 1, the filter is a symmetric
moving average, which is factored as γ(F )γ(B). In this case, it is not necessary
to solve the two systems. All that is needed is to generate first yt from yt =
γ(B)zt and then xt from xt = γ(F )yt. To that end, a backcasts and a forecasts
are required. Thus, the previous algorithm can be considered as a generalization
to Arma filters of the procedure used by the program X11–Arima for finite
moving average filters (see Dagum, 1980). For this reason, we call the filters
given by the previous algorithm Arma filters–Arima. By using the Arima
model followed by the input series as previously described, the performance
of the filter at both ends of the series is improved with respect to that of the
original filter, just as the X11–Arima filters are an improvement over the X11
filters.
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2 Program Trace

2.1 Brief Description of the Program

Trace (“Trend And Cycle Estimation”) is a program written in Fortran for
PCs under MS–Dos. The program estimates trends and cycles by means of
the application of two–sided Arma filters to the input series. These filters
are doubly–infinite and symmetric, and constitute a generalization of the usual
finite symmetric moving average filters used, for example, in X–11. To improve
the estimations at both ends of the series, a model for the input series can be
used, in a way similar to that used in the popular X–11–Arima (see Dagum
1980).

The use of Arma filters, or I.I.R. filters in the electrical engineering termi-
nology, has two main advantages with respect to the usual finite moving average
filters. First, because rational functions are used instead of polynomials in the
backshift operator, a better approximation to an ideal gain function is possible.
Second, the number of forecasts and backcasts required for the finite sample
implementation of Arma filters is much smaller than for finite moving average
filters.

All of the Arma filters used by Trace can be obtained as Wiener–
Kolmogorov filters in certain signal extraction problems. Thus, the computation
of the output of Arma filters can be made very simple by using Tunnicliffe Wil-
son’s algorithm as described by Burman (1980). When a model for the input
series is available, the algorithm of last section can be applied to improve the
performance of the filter at both ends of the series.

For the estimation of trends, low–pass filters are available which can be
designed in such a way that the resulting filter approximates an ideal filter
as much as desired. These low–pass filters belong to the family of two–sided
Butterworth filters, which can be based either on the sine (BFS) or the tangent
function (BFT). The formulae for these filters are given by (17) for the BFS
and (18) for the BFT.

Business cycles can be estimated by means of band–pass filters, which
are obtained from tangent Butterworth filters in the manner described in the
previous section. They can also be estimated as deviations from long–term
trends estimated with Butterworth filters.

In Trace, it is possible to estimate trend–cycle components by using
airline model–based filters. These filters depend on two parameters, θ and Θ,
which are the two moving average parameters of the airline model from which
the filter is derived. The Wiener–Kolmogorov formula for these filters is given
by (10).
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Squared gain function

The airline trend–cycle filters are similar to the trend–cycle filters of X11,
see figure 2. The parameters θ and Θ of the airline model determine the de-
gree of stability of the trend–cycle and the seasonal components of the series
which follows that model. Thus, if θ, for example, is close to −1, the trend–
cycle is very stable and the gain of the trend–cycle filter is very narrow in the
neighborhood of the zero frequency. The same principle applies to the seasonal
component. When Θ tends to −1, the seasonal component becomes more and
more deterministic and the gain of the seasonal filter gets more and more narrow
around the seasonal frequencies.

To design an airline trend–cycle filter, an airline model should be first
fitted to the input series. This can be done with, for example, program Tramo,
mentioned earlier. Then, the estimated parameters are the values that should
be given to the airline trend–cycle filter. In this way, trend–cycle (Arma)
filters can be constructed which are an alternative to the trend–cycle (moving
average) filters of X11. Note that the parameter estimates of the airline model
give an indication of the stability of the trend–cycle and seasonal components,
as mentioned earlier. These estimates can be considered as a replacement of
the signal–to–noise ratio given by X11.

If one chooses for the θ parameter in the airline trend–cycle filter a value
close to 1, for example θ = .985, a trend–cycle filter is obtained which behaves
very much like a seasonal adjustment filter. This can be verified using (10) and
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Fig. 3: Squared gain of airline filters for θ = .985 and three values of Θ

the formulae given immediately after it in the last section. Fixing, for example
θ = .985, and letting Θ vary in the interval [−.5,−.98], say, we obtain different
seasonal adjustment filters. The closer Θ is to −1, the narrower the gain of the
filter becomes in the neighborhood of the seasonal frequencies. In this respect,
we can say that when θ = .985 and Θ is close to −1, the filter behaves like a
“comb” filter with respect to the seasonal frequencies. See figure 3.

To perform seasonal adjustment with Trace, a model should be first fit-
ted to the input series. This model should be a multiplicative seasonal Arima
model with (0, 1, 1) modeling the seasonal part. It can be automatically iden-
tified and estimated using program Tramo, although a simple way to proceed
is to specify an airline model. Then, the estimated value of Θ corresponding to
the seasonal part (0, 1, 1) is the value that should be given to the airline filter,
together with θ = 0.985, as described earlier. Since the model that defines the
filter is in this case not likely to be found in practice, it is strongly recommended
to apply the filter with a plausible model for the input series.

When a model for the series is not available and the filter is not a band–
pass filter, the program uses the model that defines the filter and obtains the
filtered series by means of signal extraction. This can be done because all of
the filters considered in the program admit a model–based interpretation. The
algorithm used by default is a cascade implementation of Tunnicliffe Wilson’s
algorithm, which is described in Gmez (1998). Also available are the Kalman
filter and smoother and penalized least squares smoothing. By the results of
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Fig. 4: Design of a low–pass filter for
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Fig. 5: Design of a band–pass filter for
δ1 = .1, δ2 = .01, xp,1 = .02π, xp,1 =
.08π and xs = .15π

Gmez (1999), the three methods should give identical results.

In the case of band–pass filters, the model which defines the filter is usually
very different from the models encountered in practice and a plausible model
for the input series must be given to the program.

As mentioned earlier, when an Arima model for the input series is avail-
able, the program uses the algorithm described in the last section to improve
the estimation at both ends of the series.

The program allows for the design of two–sided Butterworth filters by
means of the tolerance parameters, δ1 and δ2, the pass band [0, xp] and the stop
band [xs, π], as described in the last section. See figure 4. They can also be
designed more directly, by means of the frequency xc where the gain function is
equal to 1/2, or the noise to signal ratio λ = σ2

n/σ2
b , and the degree of the filter

d in (15) or (16).

The program also allows for the design of band–pass filters derived from
tangent Butterworth filters. To this end, the tolerance parameters, δ1 and δ2,
the pass band [xp,1, xp,2], and the stop band [xs,2, π], described in the last section,
must be given to the program. See figure 5. An alternative way of designing
these filters consists of designing first the tangent Butterworth filter on which
the band–pass filter is based, along the lines of section 1.3.4, and then giving to
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the program the parameters of this filter, d and xc or λ, together with the pass
band [xp,1, xp,2].

Program Trace allows for the application of a single filter, which can be
an airline, Butterworth or band–pass filter, or a product of two filters. In the
latter case, the filters are an airline filter and a low–pass or band–pass filter.
The filters used by Trace allow to mimic the X11 procedure to estimate the
different components. For example, to estimate the trend–cycle component,
the first filter would be the airline filter appropriate for seasonal adjustment
described earlier, where θ = .985, and the second filter would be a two–sided
sine or tangent Butterworth filter. This last filter would be the equivalent of
the Henderson filters of X11.

The program can generate arrays containing the squared gain functions
and the specification lines used in the design of the different filters. It can
also generate MATLAB and GNUPLOT code to obtain graphs for the designed
airline, two–sided Butterworth and band–pass filters, as well as for the product
filters previously described.

It has already pointed out that fixed filters can generate spurious cycles
(Slutsky effect). This is particularly dangerous when one is interested in esti-
mating long–term (smooth) trends or business cycles, which in Trace are ob-
tained by applying two–sided Butterworth or band–pass filters. For this reason,
a two–step procedure is strongly recommended when two–sided Butterworth or
band–pass filters are to be used by the program to estimate long–term trends or
business cycles. The application of Trace should always be the second step in
this two–step procedure. The first step should consist of the estimation of the
trend–cycle component by means of the application of a model–based method,
like the one implemented in programs Tramo and Seats. In this way, the
generation of spurious cycles is prevented because the first filter, which is the
model–based filter, guarantees that if there is no power in a certain frequency
band, the gain of the filter in that band will be zero. For example, if the input
series is white noise, the model–based filter would be zero.

If a Butterworth or a band–pass filter is to be applied to the trend–cycle
component estimated with Tramo and Seats in the second step of the previous
two–step procedure, the model which should be specified for the input series
is the model followed by the theoretical trend–cycle component given by the
model–based method. This information is given by program Seats.

2.2 Instructions for the User

2.2.1 Installation

Create a directory, for example TRACE. Decompress the file in this directory.
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2.2.2 Execution of the Program

Before executing the program, the user has to enter the relevant information
in the file SERIE.TRC, which is located in the directory where Trace was
installed. The structure of this file will be described later. In the directory
SPECTRC, the user can find several specification files for the most often used
quarterly, monthly and yearly filters.

Once the file SERIE.TRC is ready, the program is executed by typing
TRACE. This command is not case sensitive.

2.2.3 Output Files

You can see the result of the program by editing or printing the file serie-
name.TRC in the subdirectory OUTPUT. The filtered series is in the file serie-
name.DAT in the GNUPLOT subdirectory.

2.2.4 Printing TRACE User’s Manual

In the directory TRACEMAN you can find the file TRACEMAN.PDF contain-
ing the program manual.

2.3 Description of the Input Parameters

2.3.1 Filter Type

In Trace, the filter type is controlled with the following parameter:

Parameter Meaning Default

FILTER = 1 Symmetrized Butterworth filter of the sine version
(BFS)

1

= 2 Symmetrized Butterworth filter of the tangent ver-
sion (BFT)

= 3 Band–pass filter derived from a Butterworth filter
of the tangent version (BPFT)

= 4 Airline trend–cycle filter (ATF)

= 5 Product of ATF and BFS

= 6 Product of ATF and BFT

= 7 Product of ATF and BPFT
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2.3.2 Filtering Method

In Trace, the filtering method is controlled with the following parameter:

Parameter Meaning Default

METHOD = 0 No filter is applied 0

= 1 Wiener–Kolmogorov filtering is applied; the fore-
casts and backcasts are obtained with the model
that defines the filter

= 2 Wiener–Kolmogorov filtering is applied; the fore-
casts and backcasts are obtained with a model en-
tered by the user

= 3 Kalman filtering is applied; the forecasts and back-
casts are obtained with the model that defines the
filter

= 4 Penalized least squares smoothing is applied; the
forecasts and backcasts are obtained with the model
that defines the filter

2.3.3 Low–pass Filter Design

In Trace, low–pass filters can be designed in three different ways. The first one
consists of specifying the parameters d and xc of (15) or (16). In the second one,
the parameter d of (15) or (16) and the parameter λ of (17) or (18) are given
to the program. The third one uses the parameters δ1 and δ2 of Section 1.3.3
to set the tolerance limits in the pass and the stop band, and the parameters
xp and xs of the same Section to set the limits of the pass and the stop bands.

The following parameters are used in Trace to design low–pass filters:
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Parameter Meaning Default

DI = Parameter d in the exponent of (15) or (16); increas-
ing d makes the fall of the filter sharper

0

XC = Parameter xc in the denominator of (15) or (16);
it is the frequency at which the gain of the filter is
1/2, and must be entered divided by π

0

LAMBDA = Parameter λ in the denominator of (17) or (18); it
is the quotient σ2

n/σ2
b of variances of the innovations

of nt and st in model (11)

0

DD = Array of two elements, containing the parameters
δ1 and δ2 of Section 1.3.3 used to set the tolerance
limits in the pass and the stop band

All 0

XP = Parameter xp of Section 1.3.3 used to set the limit
of the pass band; it is a frequency, which must be
entered divided by π

0

XS = Parameter xs of Section 1.3.3 used to set the limit
of the stop band; it is a frequency, which must be
entered divided by π

0

2.3.4 Band–pass Filter Design

In Trace, only band–pass filters based on tangent Butterworth filters are con-
sidered. They must always be applied with a model for the series, because the
model which defines the filter is usually too unreliable.

These band–pass filters can be designed in Trace in three different ways.
The first one consists of specifying the parameters d and xc of the tangent
Butterworth filter on which the band–pass filter is based, see section 1.3.4, plus
the parameters xp,1 and xp,2 to set the pass band [xp,1, xp,2]. In the second one,
the parameters d and λ of the tangent Butterworth filter on which the band–
pass filter is based, together with the parameters xp,1 and xp,2 to set the pass
band, are given to the program. The third one uses the parameters δ1 and δ2 of
Section 1.3.4 to set the tolerance limits in the pass and the stop band, and the
parameters xp,1, xp,2 and xs,2 of the same Section to set the limits of the pass
and the stop bands.

The following parameters are used in Trace for designing band–pass
filters:
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Parameter Meaning Default

DI = Parameter d of the tangent Butterworth filter on
which the band–pass filter is based

0

XC = Parameter xc of the tangent Butterworth filter on
which the band–pass filter is based; it is a frequency,
which must be entered divided by π

0

LAMBDA = Parameter λ of the tangent Butterworth filter on
which the band–pass filter is based

0

DD = Array of two elements, containing the parameters
δ1 and δ2 of Section 1.3.4 used to set the tolerance
limits in the pass and the stop band

All 0

XP = Parameter xp,1 of Section 1.3.4 used to set the first
limit of the pass band; it is a frequency, which must
be entered divided by π

0

XP2 = Parameter xp,2 of Section 1.3.4 used to set the sec-
ond limit of the pass band; it is a frequency, which
must be entered divided by π

0

XS = Parameter xs,2 of Section 1.3.4 used to set the limits
of the stop bands; it is a frequency, which must be
entered divided by π

0

2.3.5 Airline Trend–cycle Filter Design

The following parameters are used in Trace for designing airline filters:

Parameter Meaning Default

T1 = Parameter θ (true sign) of the regular moving aver-
age part of the airline model

0

TS = Parameter Θ (true sign) of the seasonal moving av-
erage part of the airline model

0

MS = Length of the seasonal period in the airline model 0
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2.3.6 ARIMA Model for the Input Series

MQ = Number of seasons (12 for monthly,
6 for bimonthly, 4 for quarterly, 1 for annual, and so on).

1

LAM = 1 No transformation of data 0
= 0 Take logs of data

D = # of non–seasonal differences 1

BD = # of seasonal differences 1

P = # of non–seasonal autoregressive terms 0

BP = # of seasonal autoregressive terms 0

Q = # of non–seasonal moving average terms 1

BQ = # of seasonal moving average terms 1

TH = Q values for the parameters of the regular moving average pa-
rameters.

All -.1

BTH = BQ values for the parameters of the seasonal moving average
parameters.

All -.1

PHI = P values for the parameters of the regular autoregressive param-
eters.

All -.1

BPHI = BP values for the parameters of the seasonal autoregressive pa-
rameters.

All -.1

READ = ‘Y’ The program reads in the output file of Tramo or
Seats the parameters MQ, LAM, D, BD, P, BP,
Q, BQ, TH, BTH, PHI, and BPHI, of the Arima
model for the theoretical component (Seats) or the
(linearized) aggregate series (Tramo). Used with
METHOD=2

‘N’

= ‘N’ The Arima model parameters are entered by the
user if METHOD=2

PATH = Path for the file containing the output of Tramo or Seats, for
example: ‘C:\TRAMO\OUTPUT\AIRLINE.OUT’

COMP = ‘TREND’ The program reads the model for the theoretical
trend–cycle component (Seats)

= ‘TRANSITORY’The program reads the model for the theoretical
transitory component (Seats)

= ‘AGGREGATE’ The program reads the model for the (linearized)
aggregate series (Tramo)
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2.3.7 Routine use on Many Series: the ITER Parameter

The program contains a facility to handle in a single file many series, perhaps
with different models each. This is controlled by the parameter ITER, which
can take the following values

Parameter Meaning Default

ITER = 0 One series, one model (the usual input file) 0
= 1 several models are provided by the user to

be applied by the program to the same series
= 2 Several series are to be treated by the program

with the same model
= 3 Several series, each with its own specified

model, are treated by the program

When ITER = 1 the names of the output file are MODEL1.OUT, . . . ,
MODELn.OUT , where n is the number of models (if ITER = 2, 3 the usual
seriename.OUT ).

The structure of the input file serie if ITER > 0 is the following:

ITER = 1 You have to append (in any format) at the end of
the usual input file the number of namelists INPUT
(and eventually namelists REG) that you want;
remember that the structure of the namelists
INPUT and REG is the following:
$ INPUT parameter–name=parameter–value, . . .,
parameter–name=parameter–value, $
$ REG parameter–name=parameter–value, . . .,
parameter–name=parameter–value, $

ITER = 2 You have to append (in any format) at the end of
the usual input file the number of series that you
want, according to the following convention:
1st line: title
2nd line: number of observations

starting year
starting period
Nfreq

3rd to nth line: observations in any format
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ITER = 3 You have to append (in any format) at the end of the
usual input file the number of pairs series–namelist
that you want; the convention for the series is the
same as in ITER = 2, and for the namelist the same
as in the case ITER = 1

When ITER 6= 0, Trace sends the output file to the subdirectory OUTPUT.

2.3.8 Others

Parameter Meaning Default

GRAPH = 0 Parameter to control the generation of data and
MATLAB and GNUPLOT code for plots

0

MFREC = 0 Parameter to control table format (the number of
columns)

4

2.3.9 Minimum Number of Observations

The minimum number of observations depends on MQ, on the particular model,
and on the options requested. By default, if m denotes the minimum number
of observations,

– for MQ ≥ 12, m = 36
– for MQ < 12, m = max(12, 4×MQ).

If the number of observations satisfies these minima, but is not enough for some
additional option requested, the option is removed and its default value reset.

2.4 Input File and Examples

The input starts with the series to be treated, comprising no more than 600
observations, followed by one set of control parameters. The data can be in an
external file, in which case only the path for this file need to be given, or can
be written in free format before the control parameters.

To specify the set of control parameters for the series model, the NAMELIST
facility is used, so that only those parameters which are not at their default val-
ues need to be set.

The series is set up as:

Card 1 TITLE (no more than 72 characters)

Card 2 NZ NYER NPER NFILE (free format)
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If NFILE is 0, then

Card 3 myfile (path for the file containing the data in ASCII
format)

else if NFILE is 2

Card 3 myfile (path for the file containing the data in the format
used for graphs in TRAMO and SEATS)

else if NFILE is 3

Card 3 mypath (path for the GRAPH directory for SEATS or
TRAMO; the data will be automatically read by the
program from the GRAPH directory. Used only with
READ=‘Y’. Also, ITER should not be 1)

else if NFILE is 1

Card 3 et seq. Z(I): I = 1, NZ (free format),

where NZ is the number of observations, NYER the start year, NPER the start
period, and NFILE is an instruction to control the reading of the data. Z(.) is
the array of observations. (The first nonblank characters of TITLE are used by
the program to create two files, named ********.OUT and ********.LOG, in the
subdirectory OUTPUT containing the output of the program.)

This is followed by namelist INPUT. The namelist starts with $INPUT
and terminates with $. The parameters are entered separated by blanks.

Eight examples of input files for Trace are provided. They illustrate
some of the most relevant features of the program.

Note: the format ‘$INPUT . . . $’ can be replaced by others such as ‘&INPUT . . . /’.
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EXAMPLE 1

SAUSGNP
140 1951 1 0

SERIES\SAUSGNP
$INPUT FILTER=1 METHOD=1

LAM=1
DI=2 LAMBDA=1600
GRAPH=1 MFREC=4

$
*** First example of the paper "The Use of Butterworth Filters for Trend and Cycle
Estimation in Economic Time Series", by G{\’o}mez (2003). The observations are read from
an external file (NFILE=0, the last number in the second line). A two--sided sine
Butterworth filter is applied to the seasonally adjusted series of logged USGNP
(quarterly), obtained using TRAMO/SEATS (FILTER=1). The Wiener-Kolmogorov filter
will be applied, without a model for the input series (METHOD=1). No logarithms are
taken (LAM=1). There is no seasonality in the series (MQ=1, default value). The
filter is the Hodrick and Prescott (1981) filter (DI=2 LAMBDA=1600). The program
will produce a MATLAB m--file to plot the gain function of the designed filter
(GRAPH=1). A format of four columns is given for the tables (MFREC=4).

EXAMPLE 2

TRDUSGNP
140 1951 1 0

SERIES\TRDUSGNP
$INPUT FILTER=3 METHOD=2

LAM=1 D=2 Q=2 TH(1)=.0877 TH(2)=-.9123
DD(1)=.1 DD(2)=.1 XP=.0625 XP2=.3 XS=.4
GRAPH=1 MFREC=4

$
*** Second example of the paper "The Use of Butterworth Filters for Trend and Cycle
Estimation in Economic Time Series", by G{\’o}mez (2003). The observations are read from
an external file (NFILE=0, the last number in the second line). A band-pass filter
is applied to the trend-cycle series of logged USGNP (quarterly), obtained using
TRAMO/SEATS (FILTER=3). The Wiener-Kolmogorov filter will be applied, with a model
for the input series (METHOD=2). The filter is applied using the model (0,2,2),
where th1=.0877 and th2=-.9123, for the theoretical trend-cycle component. The model
is taken from SEATS (D=2 Q=2 TH(1)=.0877 TH(2)=-.9123). No logarithms are taken
(LAM=1). There is no seasonality in the series (MQ=1, default value). The filter is
designed to pass all oscillations with period between 6 and 32 quarters (DD(1)=.1
DD(2)=.1 XP=.0625 XP2=.3 XS=.4) The program will produce a MATLAB m-file to plot the
gain function of the designed filter (GRAPH=1). A format of four columns is given
for the tables (MFREC=4).
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EXAMPLE 3

TRDAIRLN
144 1949 1 0

SERIES\TRDAIRLN
$INPUT FILTER=1 METHOD=2

LAM=1 D=2 Q=2 TH(1)=.0478 TH(2)=-.9522
DD(1)=.1 DD(2)=.01 XP=.02 XS=.05
GRAPH=1 MFREC=12

$
*** Third example of the paper "The Use of Butterworth Filters for Trend and Cycle
Estimation in Economic Time Series", by G{\’o}mez (2003). The observations are read from
an external file (NFILE=0, the last number in the second line). A two--sided sine
Butterworth filter is applied to the trend-cycle series of the airline passengers
series of Box and Jenkins (1970) (in logs), obtained using TRAMO/SEATS (FILTER=1).
The Wiener-Kolmogorov filter will be applied, with a model for the input series
(METHOD=2). The filter is applied using the model (0,2,2), where th1=.0478 and
th2=-.9522, for the theoretical trend-cycle component. The model is taken from SEATS
(D=2 Q=2 TH(1)=.0478 TH(2)=-.9522). No logarithms are taken (LAM=1). There is no
seasonality in the series (MQ=1, default value). The filter is designed to pass all
oscillations with period greater than 96 months (eight years) (DD(1)=.1 DD(2)=.01
XP=.02 XS=.05). The program will produce a MATLAB m-file to plot the gain function
of the designed filter (GRAPH=1). A format of twelve columns is given for the tables
(MFREC=12).

The input file for the previous example can be simplified if we let
TRACE read the SEATS output file to find the model for the theoretical
trend-cycle component. Suppose the SEATS output file is AIRLINE.OUT.
Then, the following specification would accomplish this:
TRDAIRLN
144 1949 1 0

SERIES\TRDAIRLN
$INPUT FILTER=1 METHOD=2

READ=’Y’ PATH=’C:\SEATS\OUTPUT\AIRLINE.OUT’ COMP=’TREND’
DD(1)=.1 DD(2)=.01 XP=.02 XS=.05 GRAPH=1 MFREC=12 $

If we have just run SEATS, we can even let TRACE read the trend-cycle
estimated by SEATS. To this effect, we would use the specification:
TRDAIRLN
144 1949 1 3

C:\SEATS\GRAPH
$INPUT FILTER=1 METHOD=2

READ=’Y’ PATH=’C:\SEATS\OUTPUT\AIRLINE.OUT’ COMP=’TREND’
DD(1)=.1 DD(2)=.01 XP=.02 XS=.05 GRAPH=1 MFREC=12 $
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EXAMPLE 4

TRDAIRLN
144 1949 1 0

SERIES\TRDAIRLN
$INPUT FILTER=3 METHOD=2

LAM=1 D=2 Q=2 TH(1)=.0478 TH(2)=-.9522
DD(1)=.1 DD(2)=.01 XP=.02 XP2=.08 XS=.15
GRAPH=1 MFREC=12

$
*** Fourth example of the paper "The Use of Butterworth Filters for Trend and Cycle
Estimation in Economic Time Series", by G{\’o}mez (2003). The observations are read from
an external file (NFILE=0, the last number in the second line). A band-pass filter
is applied to the trend-cycle series of the airline passengers series of Box and
Jenkins (1970) (in logs), obtained using TRAMO/SEATS (FILTER=3). The
Wiener-Kolmogorov filter will be applied, with a model for the input series
(METHOD=2). The filter is applied using the model (0,2,2), where th1=.0478 and
th2=-.9522, for the theoretical trend-cycle component. The model is taken from SEATS
(D=2 Q=2 TH(1)=.0478 TH(2)=-.9522). No logarithms are taken (LAM=1). There is no
seasonality in the series (MQ=1, default value). The filter is designed to pass all
oscillations with period between 18 and 96 months. (DD(1)=.1 DD(2)=.01 XP=.02
XP2=.08 XS=.15) The program will produce a MATLAB m-file to plot the gain function
of the designed filter (GRAPH=1). A format of twelve columns is given for the tables
(MFREC=12).

EXAMPLE 5

AIRLINE
15 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$INPUT FILTER=4 METHOD=0

T1=-.5 TS=-.7 MS=12
GRAPH=1

$
***
This is an example of an airline filter design
The observations are read from the input file (NFILE=1, the last number
in the second line).
Note that there are only 15 observations in the input series, all equal
to zero. This is because no filter is applied (METHOD=0).
The filter is an airline filter (FILTER=4).
The airline model is a monthly one with parameters -.5 and -.7 (T1=-.5
TS=-.7 MS=12).
The program will produce a MATLAB m-file to plot the gain function of
the designed filter (GRAPH=1).
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EXAMPLE 6

AIRLINE LINEAS AEREAS DE BOX-JENKINS
144 1949 1 1
112 118 132 129 121 135 148 148 136 119 104 118
115 126 141 135 125 149 170 170 158 133 114 140
145 150 178 163 172 178 199 199 184 162 146 166
171 180 193 181 183 218 230 242 209 191 172 194
196 196 236 235 229 243 264 272 237 211 180 201
204 188 235 227 234 264 302 293 259 229 203 229
242 233 267 269 270 315 364 347 312 274 237 278
284 277 317 313 318 374 413 405 355 306 271 306
315 301 356 348 355 422 465 467 404 347 305 336
340 318 362 348 363 435 491 505 404 359 310 337
360 342 406 396 420 472 548 559 463 407 362 405
417 391 419 461 472 535 622 606 508 461 390 432
$INPUT FILTER=4 METHOD=2
MQ=12 TH(1)=-.4 BTH(1)=-.6
T1=.985 TS=-.6 MS=12
GRAPH=1
$

***
This is an example of an airline filter, designed as a seasonal
adjustment filter (T1=.985 TS=-.6 MS=12).
The observations are read from the input file (NFILE=1, the last number
in the second line).
The filter is an airline filter (FILTER=4).
The Wiener-Kolmogorov filter will be applied, with a model for the
input series (METHOD=2).
The filter is applied using the airline model (0,1,1)(0,1,1), where
th1=-.4 and th12=-.6, for the input series (TH(1)=-.4 BTH(1)=-.6).
Logarithms are taken (LAM=0, default value).
The program will produce a MATLAB m-file to plot the gain function of
the designed filter (GRAPH=1).

EXAMPLE 7

AIRLINE LINEAS AEREAS DE BOX-JENKINS
144 1949 1 3

C:\TRAMO\GRAPH
$INPUT FILTER=5 METHOD=2
READ=’Y’ PATH=’C:\TRAMO\OUTPUT\AIRLINE.OUT’ COMP=’AGGREGATE’
T1=-.4 TS=-.6 MS=12
DD(1)=.1 DD(2)=.01 XP=.02 XS=.05
GRAPH=1
$

***
This is an example of a product of two filters (FILTER=5), applied to
the airline passengers series of Box and Jenkins (1970). The first
filter is an airline filter, which is the trend-cycle filter
corresponding to the estimated model (T1=-.4 TS=-.6 MS=12). The second
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filter is a two--sided sine Butterworth filter, designed to pass all
oscillations with period greater than 96 months (eight years) (DD(1)=.1
DD(2)=.01 XP=.02 XS=.05).
The observations are read from the GRAPH directory (NFILE=3, the last
number in the second line, and READ=’Y’ in the namelist INPUT). Note
that only the GRAPH directory is specified (C:\TRAMO\GRAPH, third line),
but that the GRAPH directory must contain the files corresponding to the
airline series.
The Wiener-Kolmogorov filter will be applied, with a model for the
input series (METHOD=2).
The filter will be applied using the fitted airline model (0,1,1)(0,1,1)
to the logged series, where th1=-.4 and th12=-.6. This information is
contained in the TRAMO output file (PATH=’C:\TRAMO\OUTPUT\AIRLINE.OUT’),
which is read by TRACE (READ=’Y’). The parameter COMP=’AGGREGATE’ tells
TRACE to read the model for the aggregate series in the TRAMO output
file.
The program will produce a MATLAB m-file to plot the gain function of
the designed filter (GRAPH=1).

EXAMPLE 8

GERMANUN GERMAN UNEMPLOYMENT SERIES
116 1965 1 0

SERIES\GERMANUN
$INPUT FILTER=7 METHOD=2

MQ=4 LAM=1 P=1 Q=0 PHI(1)=-.52311 BTH(1)=-.38534
T1=.985 TS=-.4 MS=4
DD(1)=.1 DD(2)=.1 XP=.0625 XP2=.3 XS=.4
GRAPH=1 ITER=3 $

TRDUSGNP
140 1965 1 0

SERIES\TRDUSGNP
$INPUT FILTER=1 METHOD=1

MQ=4 LAM=1
XC=.1 DI=2
GRAPH=1 ITER=3 $

AIRLINE
144 1965 1 0

SERIES\AIRLINE
$INPUT FILTER=6 METHOD=2
MQ=12 LAM=0 TH(1)=-.4 BTH(1)=-.6
XC=.125 DI=4
T1=-.4 TS=-.6 MS=12
GRAPH=1 ITER=3 $

***
This is an example of an ITER file.
The last parameter (NFILE) in the second line tells the program whether
the series is going to be read from an external file (0,2,3) or from the
input file (1). In all the three series of this input file the series
are read from external files which are in the SERIES directory.
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1) The first series is the German unemployment series (quarterly). A
product of two filters is applied (FILTER=7).
The first filter is an airline filter with parameters theta1=.985 and
theta12=-.4, which is intended to perform like a seasonal adjustment
filter (T1=.985 and TS=-.4; the parameter MS is used to specify the
kind of airline model, MS=4 for quarterly, etc.).
The second filter is a band-pass filter, which is specified by means of
the parameters DD(1)=.1 (tolerance in the pass-band), DD(2)=.1
(tolerance in the stop band), XP (first frequency for the pass-band),
XP2 (second frequency for the pass-band) and XS (frequency for the
stop-band).
The product filter is applied with a model for the input series
(METHOD=2), obtained with the automatic model identification facility of
TRAMO. The model is (1,1,0)(0,1,1), and is specified using the
parameters MQ=4, P=1, Q=0, PHI(1) and BTH(1), like in TRAMO and SEATS.
The parameter GRAPH=1 tells the program to create matlab (windows
version) programs to plot the gain of the different filters.
The parameter ITER=3 is used to process several files, like in TRAMO and
SEATS.

2) The second series is the trend-cycle of the US GNP series
(quarterly), estimated with TRAMO/SEATS. A two--sided
Butterworth filter, sine version (FILTER=1) is applied. The filter is
specified by means of the parameters XC (frequency where the gain is
1/2) and DI (degree of differencing in the time domain or one half of
the exponent in the frequency domain).

3) The third series is the airline passengers series of Box and Jenkins.
A product of two filters is applied (FILTER=6).
The first filter is an airline filter with parameters theta1=-.4 and
theta12=-.6 (T1=-.4 and TS=-.6).
The second filter is a two--sided Butterworth filter, tangent version,
which is specified by means of the parameters XC and DI.
The product filter is applied with a model for the input series
(METHOD=2).
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2.5 Identification of the data and GNUPLOT files Pro-
duced by TRACE

Description of the Files in the GNUPLOT directory that contain the data and
GNUPLOT code to plot the squared gain functions.

Meaning Name of File

GNUPLOT example file to plot three series. By changing
this file appropriately the user can plot different series with
the GNUPLOT program.

gseries.gnp

GNUPLOT file generated by Trace to plot the squared
gain function of an airline trend–cycle filter

galfd.gnp

Data file generated by Trace to plot the squared gain func-
tion of an airline trend–cycle filter

galfd.dat

GENUPLOT file generated by Trace to plot the squared
gain function of a two–sided sine Butterworth filter

gbfsind.gnp

Data file generated by Trace to plot the squared gain func-
tion of a two–sided sine Butterworth filter

gbfsind.dat

GENUPLOT file generated by Trace to plot the squared
gain function of a two–sided tangent Butterworth filter

gbftand.gnp

Data file generated by Trace to plot the squared gain func-
tion of a two–sided tangent Butterworth filter

gbftand.dat

GENUPLOT file generated by Trace to plot the squared
gain function of a band–pass filter based on a tangent But-
terworth filter

gbftbpd.gnp

Data file generated by Trace to plot the squared gain func-
tion of a band–pass filter based on a tangent Butterworth
filter

gbftbpd.dat

GENUPLOT file generated by Trace to plot the squared
gain function of a filter which is the product of an airline
trend–cycle filter and a two–sided sine Butterworth filter

gpalsind.gnp

Data file generated by Trace to plot the squared gain func-
tion of a filter which is the product of an airline trend–cycle
filter and a two–sided sine Butterworth filter

gpalsind.dat

GENUPLOT file generated by Trace to plot the squared
gain function of a filter which is the product of an airline
trend–cycle filter and a two–sided tangent Butterworth filter

gpaltand.gnp
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Meaning Name of File

Data file generated by Trace to plot the squared gain func-
tion of a filter which is the product of an airline trend–cycle
filter and a two–sided tangent Butterworth filter

gpaltand.dat

GENUPLOT file generated by Trace to plot the squared
gain function of a filter which is the product of an airline
trend–cycle filter and a band–pass filter based on a tangent
Butterworth filter

gpaltbpd.gnp

Data file generated by Trace to plot the squared gain func-
tion of a filter which is the product of an airline trend–cycle
filter and a band–pass filter based on a tangent Butterworth
filter

gpaltbpd.dat

2.6 Identification of the MATLAB M–files Produced by
TRACE

Description of the Files in the MATLAB directory that contain the MATLAB
code to plot the gain functions.

Meaning Name of File

MATLAB function to obtain the polynomials in the numer-
ator and denominator of a trend–cycle filter of an airline
model. It is needed for the m–files generated by Trace

ctla.m

MATLAB function to obtain the frequency response func-
tion of an Arma filter. It is needed for the m–files generated
by Trace

freqsd.m

MATLAB m–file generated by Trace to plot the squared
gain function of an airline trend–cycle filter

galfw.m

MATLAB m–file generated by Trace to plot the squared
gain function of a two–sided sine Butterworth filter

gbfsinw.m

MATLAB m–file generated by Trace to plot the squared
gain function of a band–pass filter based on a tangent But-
terworth filter

gbftbpw.m

MATLAB m–file generated by Trace to plot the squared
gain function of a filter which is the product of an airline
trend–cycle filter and a two–sided sine Butterworth filter

gpalsinw.m
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Meaning Name of File

MATLAB m–file generated by Trace to plot the squared
gain function of a two–sided tangent Butterworth filter

gbftanw.m

MATLAB m–file generated by Trace to plot the squared
gain function of a filter which is the product of an airline
trend–cycle filter and a two–sided tangent Butterworth filter

gpaltanw.m

MATLAB m–file generated by Trace to plot the squared
gain function of a filter which is the product of an airline
trend–cycle filter and a band–pass filter based on a tangent
Butterworth filter

gpaltbpw.m
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4 Classification of Input Parameters by Func-
tion

Filter Type

FILTER, 21

Filtering Method

METHOD, 21

Low–pass Filter Design

DI, 22, 23 XC, 22, 23
LAMBDA, 22, 23 DD, 22, 23
XP, 22, 23 XS, 22, 23

Band–pass Filter Design

DI, 22, 23 XC, 22, 23
LAMBDA, 22, 23 DD, 22, 23
XP, 22, 23 XS, 22, 23
XP2, 23

Airline Filter Design

T1, 23 TS, 23
MS, 23

Arima Model for the Input Series

MQ, 24 LAM, 24 READ, 24
D, 24 BD, 24 PATH, 24
P, 24 BP, 24 COMP, 24
Q, 24 BQ, 24
TH, 24 BTH, 24
PHI, 24 BPHI, 24
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Others

ITER, 25 MFREC, 26

GRAPH, 26
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Index
BD, 24
BP, 24
BPHI, 24
BQ, 24
BTH, 24

COMP, 24

D, 24
DD, 22, 23
DI, 22, 23

FILTER, 21

GRAPH, 26

ITER, 25

LAM, 24
LAMBDA, 22, 23

METHOD, 21
MFREC, 26
MQ, 24
MS, 23

NFILE, 27
NPER, 27
NYER, 27
NZ, 27

P, 24
PATH, 24
PHI, 24

Q, 24

READ, 24

T1, 23
TH, 24
TS, 23

XC, 22, 23

XP, 22, 23
XP2, 23
XS, 22, 23
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