SSMMATLAB; a Set of MATLAB (OCTAVE)

Programs for the Statistical Analysis of State
Space Models

Victor Gomez

Ministerio de Hacienda y A.P.
Madrid, SPAIN
(© Victor Gémez 2019

January 2019

Abstract

The purpose of this document is to describe the functions written in MATLAB of the
toolbox SSMMATLARB for the statistical analysis of state space models. These functions
can also run in the OCTAVE free software platform. The state space model considered is
very general. It may have univariate or multivariate observations, time-varying system
matrices, exogenous inputs, regression effects, incompletely specified initial conditions,
such as those that arise with nonstationary VARMA models, and missing values. There
are functions to put frequently used models, such as multiplicative ARIMA or VARMA
models, cointegrated VARMA models, VARMAX models in echelon form, transfer func-
tion models, and univariate structural or ARIMA model-based unobserved components
models, into state space form. Once the model is in state space form, other functions can
be used for covariance computation, likelihood evaluation, model estimation, forecasting
and smoothing. Functions spectral estimation and for automatic ARIMA and transfer
function identification and automatic outlier detection are also provided. A companion
book called “Linear Time Series With Matlab and Octave”, written by the author, is
forthcoming in Springer Verlag, Statistics and Computing Series.

Contents

1 Software Installation

2 acgf

3 akaikessml
4 akaikessm2
5 arimaZ2rspol
6 arimadefval
7 arimaeasy
8 arimaestni
9 arimaestos
10 arimaestwi
11 arimam

12 arimaopt
13 arimapol
14 arimasigex

15 arimasigextc

16 arimasimeasy

17 arimasplot
18 armafil

19 armaid

20 armaxe2armax

21 armaxe2sse

22 arpar

19

19

20

20

21

22

22

25

27

29

32

33

34

35

36

37

39

39

40

40

41

41

23 aurirvarmapqPQ

24 aurivarmapqPQ

25 autcov

26 beta_cdf

27 blacktu

28 bmols

29 bols

30 btval

31 cal

32 candec

33 cascade

34 cascadessml
35 cbic

36 chkroots

37 chkstainv
38 chmarima
39 cinest

40 cleanpmat
41 cleanpol

42 cohepha

43 coincid

44 compresde0

45 compresex

42

43

43

43

44

44

45

45

45

46

47

48

50

50

51

51

51

52

53

53

53

54

54

46 conmedfjac
47 conmedfv
48 constant
49 constantx
50 copmut
51 cospqu
52 crcreg

53 crcregr
54 croscor
55 croscov
56 crosspan
57 csigsets
58 cTheta
59 cumnor
60 dbptanbut
61 deltafil
62 diferm

63 diffest

64 distnj

65 dlyapsq
66 dsinbut
67 dtanbut

68 dtimesy

55

55

56

56

57

57

58

59

59

59

60

60

60

61

62

63

64

64

65

65

66

67

68

69 duplication
70 durid

71 durlev

72 durwat

73 east

74 eastdate

75 enfinvp

76 enfstab

77 enfstabpol

78 enfstap

79 estvarmaxkro
80 estvarmaxpqrPQR
81 eurpi

82 evarmallrurimp
83 exactmedfv
84 exactmedfvc
85 exactmedfved
86 fasttf

87 fdhess

88 fdis_cdf

89 fdjac2

90 findurpir

91 fipa

69

69

70

71

71

71

72

72

72

73

73

7

81

81

82

82

84

85

86

86

87

87

88

92 fixvarmapqPQ

93 fixvarmapqPQe

94 fstlkhev

95 gacf

96 gammln

97 gammp

98 genfixseaspat
99 genleap

100 gensersm
101 genycor

102 ggbpsinbut
103 ggbptanbut
104 ggsintanbut
105 glags

106 glcd

107 gser

108 hanris

109 hist2

110 housref
111ical

112 imparm

113 incossm

114incovma

88

88

89

89

90

90

90

90

91

91

92

92

93

93

94

94

94

95

95

96

96

97

98

115inest

116 infer

117 inv2

118 inv2r

119inv3

120 inv3r

121 invmodel

122 invroots

123 isOctave

124 jnorm

125 jprod

126 jqrt

127 kAl

128 kTA

129 klv
130lagaena

131 lagaenar
1321bs

133 leapid

134 lkevarmapqPQ
135 lkevarmapqPQd
136 lkevarmapqP Qe

137 lkhev

98

99

99

99

100

100

100

101

102

102

102

102

103

103

103

104

104

104

104

105

105

106

107

138 Im1KF

139 logF

140 lomonth
141 Iratiocr

142 Iratiocrax
143 Iratiocrx
144 Iratiopppt
145 Iratiopqrl
146 Iratiopqr
147 ltflag

148 m2mor

149 macgf

150 marqdt

151 matechelon
152 mautcov
153 mclyapunov
154 mconestim
155 mcrcregr
156 mctrbf

157 mdfestiml1r
158 mdifpol
159 mecf2mid

160 mexactestim

108

109

109

109

110

110

111

111

112

113

113

113

113

114

115

116

116

118

118

119

119

120

121

161 mexactestimc
162 mexactestimcd
163 mhanris2

164 mhanris3

165 mhanris21pqr
166 mhanris

167 mid2mecf

168 mifmin

169 minfm

170 minft

171 miout

172 mlyapunov
173 mnorm

174 mobsvf

175 modelstruc
176 modelstrucmm
177 mparm

178 mpbf

179 mprint

180 mprintar

181 mprintr

182 mshape

183 mulFA

10

122

124

126

126

127

127

131

132

132

132

133

133

133

134

135

137

140

140

141

142

143

144

144

184 mulHA
185 mulhkp
186 mulmols
187 mulols

188 multval

189 nberrecplot

190 nse2

191 nse3

192 nselimhr2
193 nselimhr3
194 nullref
195 OLSres
196 OLSrres
197 outlr

198 pafi

199 param2armaxe

200 param2mdp

201 param2sse
202 parambeta
203 parar

204 parzen

205 pecheform

206 periodg

11

144

144

144

145

145

146

146

147

147

148

148

149

149

150

151

152

152

153

153

153

154

154

155

207 permat

208 pfctsusm

209 pleft2rightcmfd
210 plotres

211 plotspcd

212 pmatmul

213 pmattrans

214 pmattrian

215 pmmulbf

216 pmspectfac

217 poldiv

218 postmulW

219 pr2ecf

220 pr2usm

221 pr2usmm

222 pr2varmapqPQ
223 pr2varmapqPQd
224 predt

225 preres

226 pright2leftcmfd
227 printres

228 printusmer

229 printusmerm

12

155

156

156

157

158

158

158

158

159

159

160

160

160

161

162

163

164

164

165

166

167

167

168

230 prmodl1x
231 prmod2x
232 prmod11x
233 prsummry
234 prtransfer
235 prtser

236 ptransfer
237 pu2ma

238 qarmax2ss1
239 qarmax2ss2
240 garmax2ss12
241 qtb
242rbols

243 rescomp
244 residual2x
245 residual3
246 restrcmodel
247 rootsarma
248 rpplot

249 runcom

250 sacspacdif
251 sarimac

252 scakff

13

169

169

170

170

171

171

172

172

172

173

174

175

175

175

177

178

179

179

180

180

181

181

182

253 scakftf
254 scakftfsqrt
255 scakffsqrt
256 scakfle2
257 scakflepc
258 scakflesqrt
259 scakfs

260 scakfssqrt
261 seasdm
262 seasdmom
263 SEAT Sres
264 shank

265 sinfelo

266 skewkur
267 smfest
268 smfestm
269 smfun

270 smfunm
271 smoothgen
272 SMTres
273 sn2u

274 SortSchur

275 specgraph

14

183

185

186

188

189

191

192

194

195

195

195

196

196

197

197

198

198

199

200

201

202

202

202

276 spectralan
277 sqrt_ckms
278 ss2if

279 ss2lcvarmaxf
280 ssmpred

281 ssmpredexg
282 ssmspectfac
283 sta2

284 sta2r
285sta3

286 stadr

287 stair

288 stamodel

289 sucdm

290 sucdmpbp
291 sucdmpbst
292 sumpol

293 susmspbp
294 suusm

295 suusmm

296 suvarmapqPQ
297 suvarmapqP Qe

298 sylvesterf

15

203

204

205

206

207

208

209

210

210

210

211

211

212

212

214

216

219

219

221

225

229

231

233

299 sympmeq
300 tabla

301 tasa

302 tfeasy
303 tfivparm
304 trade

305 tradid
306 trtout
307 tskfsribf
308 tsplot

309 tukhan
310 updatef
311 updbic
312 usmeasy
313 usmestim
314 usmestimm
315 usmestni
316 usmestos
317 var_est
318 var_res
319 varident
320 varimass

321 varmalfil

16

233

234

234

235

238

238

239

240

240

242

243

243

243

244

247

248

249

251

253

254

255

255

255

322 varmafilp

323 varmapqPQ2ssm
324 varmapqP Qestim
325 varmapqP Qestimd
326 varmapqP Qestime
327 varmasim

328 varmaxgenid

329 varmaxscmidn

330 varx_est

331 varx._res

332 vec

333 vech

334 vecparwr

335 vincovma

336 xmparm

17

256

257

258

258

259

260

261

261

262

264

264

264

265

265

265

18

1 Software Installation

To install SSMMATLAB, uncompress the file and copy its contents into a direc-
tory, for example SSMMATLAB. There should be five subdirectories with names
DATA, RESULTS, SPEC, GRAPHS, and USMSPEC. All the data files used in
the demos are in the subdirectory DATA. The subdirectory RESULTS is where
all program results are written. The subdirectory GRAPHS is used to eventually
write the plots produced by the programs. In the subdirecoty SPEC, you can find
all specification files for the different ARIMA and transfer function demos. That is,
each specification file contains instructions to read data, generate structures, etc.
Finally, the subdirectory USMSPEC has the same function than the subdirectory
SPEC but for univariate structural models.

If the user desires to work in a directory different to the one in which the
program has been installed, he should first add to the MATLAB path the
directory where SSMMATLAB has been installed. Then, if the new direc-
tory in which the user intends to work is called WORK, for example, the user can
start working with SSMMATLARB in that subdirectory. Some of the programs used
by SSMMATLAB, for example those that deal with ARIMA, transfer function or
univariate structural models, can optionally and automatically create two subdi-
rectories in WORK, called RESULTS and GRAPHS, where the program results
and plots are written.

All the functions in SSMMATLAB have been proved to also run under the free
software OCTAVE platform.

2 acgf

function c=acgf (phi,th,nc)

h

% This function computes the autocovariance function of an ARMA process
% phi(B)z_t=th(B)a_t

% The parameter nc is the number of desired autocovariances plus one,

% because the variance is included: g(0),g(1),...,g(nc-1)

h

b Input parameters:

yA phi: a (p+1 x 1) array, where p is the degree of phi(z),

yA containing the ocefficients of phi(z) in degree descending
h order

yA th : a (gq+1 x 1) array, where q is the degree of th(z),

yA containing the ocefficients of th(z) in degree descending
b order

b nc : an integer, the number of desired covariances plus one

19

A Output parameters:
pA ¢ : a (nc x 1) array containing the autocovariances in the order
% g(o);g(l)s""g(nc_l)

3 akaikessml

function [T,H,Z,ferror]=akaikessml (phip,thp)
yA

yA This function obtains Akaike’s state space representation of
pA minimal dimension corresponding to the ARMA model
b

pA y_t = [thp(z)/phip(z)] a_t

h

% where a_t is (0,1). The model is

A

% x_{t+1} = T x_t + H*xa_t

pA y_t =7 x_t + a_t,

h

b where

T (010 0] [Psi_1]

b (o1 0] [Psi_2]

% T = L... 1, ®H=1[... 1,
b [00 oo 1] [Psi_{r-1}]

b [-phi_r ... -phi_1] [Psi_r]
b

b Z = (rtoo0],

b

/A r = degree(phip) = degree(thp) and phi~{1}(z)*theta(z) =
yA Psi_0 + Psi_1%z + Psi_2x%xz"2+ ...

b

yA Input parameters:

yA phip : a (1 x np+l) array

yA thp : a (1 x nt+l) array

b

yA Output parameters:

pA T : a (r x r) matrix

/A H : a (r x 1) matrix

yA Z :a (1 x r) matrix

4 akaikessm?2

function [T,H,Z,ferror]=akaikessm2(phip,thp)

20

T

% This function obtains Akaike’s state space representation of

b nonminimal dimension corresponding to the ARMA model
b

yA y_t = [thp(z)/phip(2)] a_t

h

% where a_t is (0,1). The model is

h

/A x_t =T x_{t-1} + H*a_t

% y_t =Zzx_t,

b

/A where

pA [0 1 0 0] [1]
b (o 0 1 .0 .. 0] [Psi_1]
% T= [... cee e 1 , H=1[... 1,
/A (O o0 o0 1] [Psi_{r-1}]
YA [0 -phi_r ... -phi_1] [Psi_r]
A

% Z = (tooo0],

b

yA r = degree(phip) = degree(thp) and phi~{1}(z)*theta(z) =
% Psi_0 + Psi_1%z + Psi_2%z"2+ ...

h

b Input parameters:

b phip : a (1 x np+l1) array

% thp : a (1 x nt+l) array

A

pA Output parameters:

A T :a ((r+1) x (r+1)) matrix

yA H ta ((r+1) x 1) matrix

% Z ta (1 x (r+1)) matrix

5 arima2rspol

function [phir,phis,thr,ths,phirst] = ...
arima2rspol (phi,Phi,th,Th,freq,dr,ds)
%k ke ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok sk ok ok sk ok sk sk sk o o ok o ok ok sk sk ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk ok ok ok ok ok sk sk ok ok ok ok
h
% This function returns the trend, seasonal and stationary polynomials,
% phir, thr, phis, ths and phirst, corresponding to the canonical
% decomposition of an ARIMA model,
h

21

% y_t = [thr(B)/phir(B)]lb_t + [ths(B)/phis(B)]lc_t + u_t,

o

% where phirst, if it exists, is a stationary factor of phir.

o

% The original ARIMA model is given by the regular and seasonal

% polynomilas, phi, Phi, th and Th, in matrix polynomial format, such
% that

h

% phi(B)*Phi(B"s)y_t = th(B)*Th(B"s)*a_t

2

% For example, phi(:,:,1)=1; phi(:,:,2)=-1, etc.

h

%t kot ok ok ok ok ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk o ok ok ok ok ok ok ok ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok sk skok ok ok ok o
A INPUTS :

% phi : regular autoregressive polynomial
b Phi : seasonal autoregressive polynomial
yA th : regular moving average polynomial
pA Th : seasonal moving average polynomial
yA freq : frequency of the data

yA dr : number of regular differences

yA ds : number of seasonal differences

%
yA QUTPUTS :

yA phir : autoregressive trend polynomial

b phis : autoregressive seasonal polynomial

pA thr : moving average trend polynomial

b ths : moving average seasonal polynomial

yA phirst: stationary autoregressive trend polynomial (factor of
/A phir)

6 arimadefval

%script file containing ARIMA default values

7 arimaeasy

function [out,ser] = arimaeasy(y,freq,varargin)
sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk o sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

b EASY ARIMA MODELING

A

T USAGE :

% out = arimaeasy(y,freq,’optionl’,optionvaluel,’option2’,optionvalue?2,...)

22

h
h
h
h
h
h
h
h

h
h
h
o
h
o
h
b
h
h
h
b
h
h
o
h
h
h
h
h
h
h
b
h
b
h
h
h
h
h
h
h
h
h

INPUTS :

y ¢ (ly x 1) array containing the series;
freq : data frequency (number of observations per year)

OPTIONS
’ [bg_year bg_per]’:

’lam’:
’[p dr ql’:
>[ps ds gs]’:

7S7:
>[dS gS]°:

’flagm’:
‘pfix’:
‘vfix?:

Yfixdif’:
Jautmid’ :
7Y7:
’rnamesrg’:
’nlestim’:
‘mvx’:

‘npr’:
’olsres’:

(1 x 2) array containing the initial year and the
initial period. Default [2000 1]

data transformation (logs), = 0 logs, =1 no logs,

default -1 (test for logs)

(1 x 3) array containing the regular orders

default: [0 1 1]

(1 x 3) array containing the first seasonal orders

default: [0 1 1]

second seasonality. Default O

(1 x 2) array containing the second seasonal orders

default: [1 1]

flag for mean, =1 mean, =0, no mean, default O

It has not effect with automatic model
identification

index array for fixed parameters

array for fixed parameter values

flag for fixing the differencing degrees, =1

degrees are fixed, = O not fixed, default O
flag for automatic model identification, = 1,
perform automatic model identification, = 0, no

automatic model identification, default 1

array for regression variables, default []

string matrix for names of regression variables,
default []

flag for nonlinear estimation, = 1, nl estimation,
= 0, no nl estimation, default 1

flag for nl method, = 1, exact maximum likelihood,
= 0, unconditional least squares, default 1

number of forecasts, default O

flag for OLS residuals, = 1, OLS residuals are used,
= 0, uncorrelated residuals (transformation of OLS
residuals) are used, default O

: flag for printing in an external file, = 1, printing

= 0, no printing, default 1

: flag for graphics, = 1, plot series, = 0, no plots

23

h
o
h
o
h
h
h
h
h
b
h
h
o
h
h
h
h
h
h
h
b
h
h
h
h
h
h
h
h
h
h
b
h
h
o

h
h
h

= 2, plots are saved but not displayed, = 3, plots
are both saved and displayed, default O

’out’: out = 1 perform outlier detection
= 0 do not perform outlier de
’omet’: omet = 1 use exact ML for model estimation
= 0 use Hannan-Rissanen
’C’: critical value for outlier detection
if negative, it is computed depending on the
sample size
’CO’: critical value for outlier detection used in the log
test and automatic model identification, default
C0=2.6 + log(log(ny)) (ny = series length)
’schr’: = 0 outliers of type A0 and TC are considered, =1
outliers of type A0, TC and LS are considered,
default 1
’spl’: (spl,sp2) span for outlier detection, default spl =1
default sp2=ny, where ny = series length
’sp2’:
’trad’: = 0 no trading day effect, = 1 TD effect, = -1, test
for TD effect, default O
’tradval’: possible number of TD variables (0 is also a value),
default [1 6]
’leapy’: = 0, no leap year effect, = 1 LP effect, = -1, test
for LP effect, default O
’easte’: = 0 no Easter effect, = 1 Easter effect, = -1, test
for Easter effect, default O
’durval’: possible days previous to Easter (0 is also a value)
default [4 6]
’sname’: character array containing the series name

OUTPUT :

Examples:

default mseries

a structure, the output of function arimaestni

[out,ser]=arimaeasy(y,freq,’autmid’,1,’out’,1)
out=arimaeasy(y,freq,’[p dr ql’,[0 1 1],’leapy’,-1)

24

8 arimaestni

function outa = arimaestni(dbname,ser,fidr,ii)

h

% function to identify, estimate and forecast an ARIMA model for one

% series. The series may have up to two seasonalities. The ARIMA model
% is of the form:

h

% phi(B)*phi_s(B~s)*phi_S(B~S)*(delta*delta_s*delta_S*y_t -mu) =

% th(B)*th_s(B~s)*th_S(B"S)*a_t

h

% In the subdirectory spec, there is a specification file where all the
% options for the ARIMA model are defined and returned in the structue
% ser. The name of this file is given in function arimaestos and passed
% to this function.

% These options include, log transformation criteria, automatic

% identification of ARMA model and differencing operators, automatic

% specification of trading day, Easter effect and leap year (for

% quarterly and monthly series only), outlier search and forecasting,
%, among other things.

% No automatic model identification is performed for the second

% seasonality (S). This part must be entered by the user. Automatic

% model identification is performed for the regular and the first

% seasonal part. Output is written in an external file in the

% subdirectory results.

T

b INPUTS:

yA dbname : name of the series

pA ser : a structure, containing the instructions for this
yA function

% fidr : an integer, corresponding to the output file

yA ii : an integer, corresponding to the series currently
% handled.

h
% OUTPUTS:

b outa : a structure containing model information for the input
yA with fields:

/A title: a string with the name of series

yA nziyip: a 1 x 3 array with number of obs., initial year, initial
pA per.

yA freq: number of seasons

yA orig: original series

yA model: structre with ARIMA model information. In the case of a

25

h
h
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
h
h
h
o
h
o
h
h
h
h
h
h
h
h
h
b
o
h
h
h
h
h
h

lam:
mean:

ps:
ds:

gs:
nreg:
result:

phis:
th:
ths:

nrout:
C:
nind:
tip:
matsis:
resinf:
hb:

Mb:

Y:
seb:
tb:

Yrg:

Youtg:
se:
tt:

npr:
pry:
Spry:
opry:

transfer function, it is the ARIMA model corresponding
to the finite linear approximation to the input filters.
It has the following fields:

= 0, logs are taken, = 1, no logs

= 1, a mean is added, = O, no mean

degree of regular AR polynomial

degree of regular differencing

degree of regular MA polynomial

degree of seasonal AR polynomial

degree of seasonal differencing

degree of seasonal MA polynomial

the number of regression variables

a structure containing estimation results

an array containing the regular AR polynomial
coefficients

an array containing the seasonal AR polynomial
coefficients

an array containing the regular MA polynomial
coefficients

an array containing the seasonal MA polynomial
coefficients

number of outliers

critical value for outlier detection

observation numbers of the outliers

string containing the outlier types

a structure containing the state space form of the model
a structure containing information about the residuals
array containing the regression estimates

matrix containing the covariance matrix of the
regression estimates

matrix containing the total regression effects

array containing the regression standard errors

array containing the t-values of the regression
estimates

array containing the regression variables that are not
outliers

array containing the outlier variables

array containing the standard errors of the estimates
array containing the t-values of the estimates

number of forecasts

array containing the forecasts (transformed scale)
array containing the standard errors of the forecasts
same as pry but in the original scale

26

T

9

ospry:

same os spry but in the original scale

arimaestos

function outa

h
h
o
h
h
h
h
h
h
h
h
h
b
h
h
h
h
o
h
h

b
h
h
h
h
h
h
o
h
h
h
h
h
h
h
h

Function for

arimaestos(fname,fmeta)

automatic identification, estimation and forecasting of

ARIMA or transfer function models for one or several series

INPUTS:
fname :

fmeta :

OUTPUTS:
outa

title:
nziyip:

freq:
orig:
model:

If fmeta = O or absent, a string such that fname.m is a
matlab function in the spec subdirectory that returns
the structure ser. In this structure, instruction for
this function are given. If fmeta = 1, a string such
that fname.txt contains a list of names of matlab
functions in the spec subdirectory that will be treated

sequentially.
= 0, fname.m is a matlab function in the spec
subdirectory that returns the structure ser; = 1,

fname.txt is a file that contains a list of matlab
functions in the spec subdirectory that will be treated
sequentially. If not input, the program sets by default
fmeta = 0,

a structure containing model information for the input
with fields:

a string with the name of series

a 1 x 3 array with number of obs., initial year, initial
per.

number of seasons

original series

structre with ARIMA model information. In the case of a
transfer function, it is the ARIMA model corresponding
to the finite linear approximation to the input filters.
It has the following fields:

: =0, logs are taken, = 1, no logs

= 1, a mean is added, = O, no mean

: degree of regular AR polynomial
: degree of regular differencing

: degree of regular MA polynomial
: degree of seasonal AR polynomial

27

h
h
h
o
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
b
h
h
h
h
h
h
h
h
h
h
b

ds:

gs:
nreg:
result:
phi:

phis:
th:
ths:
nrout:

nind:
tip:
matsis:
resinf:
hb:

Mb:

Y:
seb:
tb:

Yrg:

Youtg:
se:
tt:

npr:
pry:
sSpry:
opry:
ospry:

tfmodel:

matsis:
result:
nreg:

Yrg:

Youtg:

degree of seasonal differencing

degree of seasonal MA polynomial

the number of regression variables

a structure containing estimation results

an array containing the regular AR polynomial
coefficients

an array containing the seasonal AR polynomial
coefficients

an array containing the regular MA polynomial
coefficients

an array containing the seasonal MA polynomial
coefficients

number of outliers

critical value for outlier detection

observation numbers of the outliers

string containing the outlier types

a structure containing the state space form of the model
a structure containing information about the residuals
array containing the regression estimates

matrix containing the covariance matrix of the
regression estimates

matrix containing the total regression effects

array containing the regression standard errors

array containing the t-values of the regression
estimates

array containing the regression variables that are not
outliers

array containing the outlier variables

array containing the standard errors of the estimates
array containing the t-values of the estimates

number of forecasts

array containing the forecasts (transformed scale)
array containing the standard errors of the forecasts
same as pry but in the original scale

same os spry but in the original scale

structure with transfer function model information.

a structure containing the state space form of the model
correponding to the filtered inputs

a structure containing estimation results

the number of regression variables

array containing the regression variables that are not
outliers

array containing the outlier variables

28

h
h
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
b
h
h
o
h
h
h
h
h
h
h
h
h
h
o
h
h
h

10

yci: output corrected by filtered inputs
tford: a three column array in which the i-th row has three
numbers corresponding to the delay, the numerator
degree and the denominator degree of the i-th input
filter
phi: an array containing the regular AR polynomial
coefficients
phis: an array containing the seasonal AR polynomial
coefficients
th: an array containing the regular MA polynomial
coefficients
ths: an array containing the seasonal MA polynomial
coefficients
omg: a cell array containing the numerators of the input
filters
del: a cell array containing the denominators of the input
filters
resinf: a structure containing information about the residuals
se: array containing the standard errors of the estimates
tt: array containing the t-values of the estimates
npr: number of forecasts
dpry: array containing the forecasts of the output corrected
by the filtered inputs
dspry: array containing the standard errors of the forecasts of
the output corrected by the filtered inputs
Yin: array containing the input variables
modpred: a multiple structure containing the input forecasts if
any. The forecasts for each input are given in field
.pred
modinput: a multiple structure containing the models for the
inputsif any (.mod = O, no model; .mod =1, there is
model) . The model for each input has fields .alpha,
.phi, .theta, .sigma2
y: output series in the transformed scale
pry: array containing the forecasts (transformed scale)
spry: array containing the standard errors of the forecasts
opry: same as pry but in the original scale
ospry: same os spry but in the original scale
arimaestwi

function outa

arimaestwi(dbname,ser,fidr,ii)

29

h
h
h
h
h
h
h
h
h
h
h
h
o
h
o
h
h
h
h
h
b
h
h
o
h
h
h
h
h
h
h
b
h
b
h
h
h
h
h
h
h
h
h

function to identify, estimate and forecast a transfer function model

for one series.

described in

The method used for automatic model identificaiton is

Gomez (2009), "Transfer Function Model Identification",

Boletin de Estadistica e Investigacion Operativa, 25, pp. 109-115.

INPUTS:
dbname :
ser

fidr
ii

OUTPUTS:
outa

title:
nziyip:

freq:
orig:
model:

lam:
mean:
p:

d:

q:
ps:
ds:
gs:
nreg:
result:
phi:

phis:
th:

ths:

: an integer,

name of the series

a structure, containing the instructions for this
function
an integer, corresponding to the output file
corresponding to the series currently

handled.

: a structure containing model information for the input

with fields:

a string with the name of series
a 1 x 3 array with number of obs., initial year, initial
per.
number of seasons

original series

structre with ARIMA model information. In the case of a
transfer function, it is the ARIMA model corresponding
to the finite linear approximation to the input filters.
= 0, logs are taken, = 1, no logs

= 1, a mean is added, = O, no mean

degree of regular AR polynomial

degree of regular differencing

degree of regular MA polynomial

degree of seasonal AR polynomial

degree of seasonal differencing

degree of seasonal MA polynomial

the number of regression variables

a structure containing estimation results

an array containing the regular AR polynomial
coefficients

an array containing the seasonal AR polynomial
coefficients

an array containing the regular MA polynomial
coefficients

an array containing the seasonal MA polynomial

30

h
h
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
b
h
h
o
h
h
h
h
h
h
h
b
h
h
h
b
o
h
h
hh
h
h
h

nrout:

nind:
tip:
matsis:
resinf:
hb:

Mb:

Y:
seb:
tb:

Yrg:

Youtg:
se:
tt:

npr:
pry:
Spry:
opry:
ospry:

tfmodel:

matsis:
result:
nreg:
Yrg:
Youtg:

yci:
tford:

phi:
phis:

th:

coefficients

number of outliers

critical value for outlier detection

observation numbers of the outliers

string containing the outlier types

a structure containing the state space form of the model
a structure containing information about the residuals
array containing the regression estimates

matrix containing the covariance matrix of the
regression estimates

matrix containing the total regression effects

array containing the regression standard errors

array containing the t-values of the regression
estimates

array containing the regression variables that are not
outliers

array containing the outlier variables

array containing the standard errors of the estimates
array containing the t-values of the estimates

number of forecasts

array containing the forecasts (transformed scale)
array containing the standard errors of the forecasts
same as pry but in the original scale

same os spry but in the original scale

structure with transfer function model information.

a structure containing the state space form of the model
correponding to the filtered inputs

a structure containing estimation results

the number of regression variables

array containing the regression variables that are not
outliers

array containing the outlier variables

output corrected by filtered inputs

a three column array in which the i-th row has three
numbers corresponding to the delay, the numerator
degree and the denominator degree of the i-th input
filter

an array containing the regular AR polynomial
coefficients

an array containing the seasonal AR polynomial
coefficients

an array containing the regular MA polynomial
coefficients

31

yA ths: an array containing the seasonal MA polynomial
b coefficients

b omg: a cell array containing the numerators of the input

pA filters

b del: a cell array containing the denominators of the input
yA filters

/A resinf: a structure containing information about the residuals
yA se: array containing the standard errors of the estimates
pA tt: array containing the t-values of the estimates

yA npr: number of forecasts

pA dpry: array containing the forecasts of the output corrected
yA by the filtered inputs

pA dspry: array containing the standard errors of the forecasts of
b the output corrected by the filtered inputs

% Yin: array containing the input variables

b modpred: a multiple structure containing the input forecasts if
yA any. The forecasts for each input are given in field
/A .pred

yA modinput: a multiple structure containing the models for the

yA inputs if any (.mod = 0, no model; .mod =1, there is
yA model) . The model for each input has fields .alpha,

% .phi, .theta, .sigma2

yA y: output series in the transformed scale

pA pry: array containing the forecasts (transformed scale)

b spry: array containing the standard errors of the forecasts
% opry: same as pry but in the original scale

b ospry: same os spry but in the original scale

11 arimam

% Kalman filter given the ARIMA polynomials. The state space model is
b

b x_{t}
% y_{t}
b

% where the initial state vector is

/A

b x_{d+1} = Ax\delta + \Xixc,

b

% and Var(c) = Sigma. See Gomez and Maravall (1994), "Estimation,
% Prediction and Interpolation for Nonstationary Series with the
% Kalman Filter", Journal of the American Statistical Association,

T x_{t-1} + H a_{t}
Z x_{t},

32

% 89, 611-624. The filter is initialized at time t = d+1, where d is
% the differencing degree, and the first d observations are stacked
% to form the \delta vector.

yA

% INPUTS:

yA phi : an array containing the AR polynomial

/A alpha : an array containing the differencing polynomial
yA th : an array containing the MA polynomial

%
% OQUTPUTS:

pA Z: the Z matrix
b T: the T matrix
pA H: the H matrix
pA A: the A matrix
yA Sigma: the Sigma matrix
yA Xi: the Xi matrix

12 arimaopt

function [x,J]=arimaopt (fmarqdt,fid,x0,xv,xf,y,Y,parm,infm,pr)
pA
% This function performs the optimization for an ARIMA model

b

A INPUTS:

yA fmarqdt : = 1 estimation with lsgnonlin (matlab), = O, estimation
/A with marqdt

yA fid : an integer, corresponding to an external file

yA x0 : an array containing the initial estimated values
yA XV : an array containing the variable parameters

pA xf : an array containing the fixed parameters

yA y : input series

yA Y : matrix of regression variables

b parm: a structure containing model information, where

% .s: seasonality

b .S: second seasonality

pA .p: AR order

pA .ps: order of the AR of order s

yA .q: order of the regular MA

/A .qs: order of the MA of order s (1 at most)

% .gS: order of the MA of order S (1 at most)

pA .dr: order of regular differencing

yA .ds: order of differencing of order s

33

h
h
h
o
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
b
h
h
o
h
h
h
h
h
h
h
b

.dS:
.pvar:
.pfix:

.ninput:
.inputv:

.delay:
.ma:
.ar:

.npr:
infm

.tr

.tol:
.jac:

.maxit:
.nul:
.prt:

.chb:

.inc:

pr

OUTPUTS:
X
J

order of differencing of order S
array containing the indices of variable parameters
array containing the indices of fixed parameters
number of inputs
array containing the lagged input variables corresponding to
the polynomial approximations to the rational input filters
array with the delays of the input filters
array with the ma parameters of the input filters
array with the ar parameters of the input filters
number of forecasts
structure containing function names and optimization options
a function to evaluate the vector ff of individual functions
such that ff’*ff is minimized
>0 x is passed from marqdt to f but not passed from f to marqdt
=0 x is passed from marqdt to f and passed from f to marqdt
a parameter used for stopping
=1 evaluation of jacobian and gradient at the solution is performed
=0 no evaluation of jacobian and gradient at the solution is performed
maximum number of iterations
initial value of the nu parameter
=1 printing of results
=0 no printing of results
= 1 compute the beta estimate and its MSE
do not compute the beta estimate and its MSE
= 0, the initial states in the filter equations to obtain the
filtered variables are equal to zero (not estimated)
= 1, the initial states in the filter equations are estimated
= 1, print results in an extermal file, = 0, do not print

an array containing the estimated parameter values
a matrix containing the Jacobian at the solution

13 arimapol

function [phirs,alprsS,thrsS]l=arimapol(x,s,S,p,ps,dr,ds,dS,q,qs,qS)

h
h
h
h
h
h

this function computes the different polynomials for an ARIMA model

INPUTS:

X: an array containing the ARIMA parameter values
s: seasonality

34

h S: second seasonality

yA p: AR order

b ps: order of the AR of order s

yA q: order of the regular MA

yA gs: order of the MA of order s (1 at most)
yA gS: order of the MA of order S (1 at most)
b dr: order of regular differencing

yA ds: order of differencing of order s

h dS: order of differencing of order S

% OUTPUTS:

pA phirs : an array containing the AR polynomial
yA alprsS : an array containing the differencing polynomial
yA thrsS : an array containing the MA polynomial

14 arimasigex

function outa = arimasigex(out,Ycomp)

h

% function to perform the canonical decomposition of an ARIMA model
% previously identified with function arimaestos.

h

% phi(B)*phi_s(B"s)*(delta*xdelta_s*y_t -mu) =

% th(B)*th_s(B"s)*a_t

h

T INPUTS:

% out : a structure, output of function arimaestos

yA Ycomp : a cell array, containing the assignment of each

b regression variable to a component. Possible values are
% ’trend’, ’seas’, ’tran’ and ’irreg’.

%
% OQUTPUTS:

yA outa : a structure containing model information for the input
A with fields:

pA title: a string with the name of series

b orig: original series

yA Ycomp : same as input

/A gft: flag for graphs, = 0, no graphs, =1 graphs
yA lam: flag for logs, = 0 logs, = 1, no logs

pA npr: number of forecasts

yA sconp: standard deviation of the innovations

% conp: innovation variance

yA orig: original series

35

h
h
h
o
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
b
h
h
h
h

15

structure that contains the ARIMA model information. It

structure that contains information about the canonical

structure containing the state space model matrices and

components
stochastic
components

stochastic

including

the trend-cycle has been decomposed into a smooth trend

components
in the

components

Cc in the original scale

oCc

Y: array containing the regression variables
bg_year: initial year
bg_per: initial period
datei: date structure
str:
is the output of function suvarmapqPQ.
compcd: structure that is output of function candec
strc:
decomposition model in state space form. It is the
output of function sucdm.
compmat :
initial conditions for the state space model in which
and a cycle
StochCc: matrix containing the stochastic
StochSCc: matrix containing the mse of the
oStochCc: matrix containing the stochastic
original scale
oStochSCc: matrix containing the mse of the
in the original scale
Cc: matrix containing the components
deterministic effects
SCc: matrix containing the mse of Cc
oCc: matrix containing the
oSCc: matrix containing the mse of the
arimasigextc

function outb = arimasigextc(outa,comp,filter)

h

% function to perform the decomposition of the trend-cycle component of
% a canonical decomposition of an ARIMA model previously identified

% with function arimaestos.

b

% phi(B)*phi_s(B"s)*(delta*delta_s*y_t -mu) =
% th(B)*th_s(B"s)*a_t

h

% the decomposition of the trend-cycle, p_t, is of the form p_t =

sp_t +

% c_t, where sp_t is a (smooth) trend and c_t is a (smooth) cycle.

h
b
h

INPUTS:
out

36

a structure, output of function arimaestos

yA Ycomp : a cell array, containing the assignment of each

pA regression variable to a component. Possible values are

% ’trend’, ’seas’,’tran’ and ’irreg’.

% filter : flag for the filter to be applied to the trend-cycle

b component of the canonical decomposition. Possible values
yA are ’1p’ (low-pass) and ’bp’ (band-pass).

%
% OUTPUTS:

b outb : a structure containing model information for the input
pA with fields:

b strc: structure that contains information about the model
b y_t = Y_txbeta + sp_t + c_t + s_t + r_t + i_t in

pA Akaike state space form, where sp_t is the (smooth)
b trend and c_t is the (smooth) cycle, both obtained
% from the previous p_t by application of the low pass
b or band pass filter. It is the output of function
yA sucdmpbst (low pass) or sucdmpbp (band pass)

b StochCctc: matrix containing the stochastic components

yA StochSCctc: matrix containing the mse of the stochastic

/A components

yA oStochCctc: matrix containing the stochastic components in the
b original scale

yA oStochSCctc: matrix containing the mse of the stochastic

b components in the original scale

b Cctc: matrix containing the components including

pA deterministic effects

b SCctc: matrix containing the mse of Cctc

pA oCctc: matrix containing the Cctc in the original scale

b oSCctc: matrix containing the mse of the oCctc

16 arimasimeasy

function Y = arimasimeasy(freq,varargin)
ok ok ok ok ook ok ok ok ok ko sk ok ook K ok ok ok ok ook K ok K ok ok o ook K ok K ok ok ok ok K ok Kok ok ok ok ok Kok K ok ok

b EASY ARIMA SIMULATION

h

/A USAGE :

% Y = arimasimeasy(freq,’optionl’,optionvaluel,’option2’,optionvalue2,...)
b

T INPUTS :

R

T REQUIRED

37

h
h
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
h
h
h
o
h
o
h
h
h
h
h
h
h
h
o
h
o
h
h
h
h
h

OPTIONS

’phir’:

’phis’:
’thr’:

’ths’:

’[p dr ql’:
>[ps ds gs]’:
N

’Ns’:
’discard’:

‘gft’:

’drg’:
’dsg’:
‘mean’:
’stda’:
’seed’:

’lag’:
‘cw’:

OUTPUT : Y

Examples:

(1 x p) array containing the regular AR polynomial
in MATLAB format, for example, [-.4 1] for phir = 1.
- .4B, default 1.

(1 x ps) array containing the seasonal AR polynomial
in MATLAB format, default 1.

(1 x q) array containing the regular MA polynomial
in MATLAB format, default 1.

(1 x q) array containing the seasonal MA polynomial
in MATLAB format, default 1.

(1 x 3) array containing the regular orders

default: [0 O O]

(1 x 3) array containing the first seasonal orders
default: [0 0 0]

length of the series to be generated, default 100

number of series to be generated, default 1

number of initial observations to be discarded when
simulating the series, default 50

flag for graphics, = 1, plot series, = 0, no plots
= 2, plots are saved but not displayed, = 3, plots
are both saved and displayed, default O

regular differencing to be applied to the simulated
series when generating graphs, default O

seasonal differencing to be applied to the simulated
series when generating graphs, default O

mean value for the differenced series, "=0 mean, =0,
no mean, default O

standard deviation of the simulated series, default
1.

seed used for the simulation, default 20

number of lags for autocorrelations, default 3*freq
confidence bands coefficient, default 1.96

: the simulated (N x Ns) series array

Y=arimasimeasy(freq, ’mean’,.5)
Y=arimasimeasy(freq,’[p dr q]’,[0 1 1],’thr’,[-.4 1.],’gft’,2)

38

17 arimasplot

function arimasplot(Y,dr,dru,s,dsu,lag,rp,pcp,cw)
93k ke ok sk 3k ok sk ok ok K ok sk 3 ok K 3 ok K ok ok 3 ok ok 3 ok K 3k ok 3K 3k ok 3 ok ok 3 ok ok 3 ok 3 3k ok 3 ok ok 3 ok ok 3 ok 3k 3k ok 3 ok ok 3 ok oK 3 ok 3k 3k ok K ok ok K ok ok ok K K

% Auxiliary function called in arimasimul_d.m to plot the different series

T

% INPUTS:

yA y : array containing the simulated ARIMA series

yA dr : number of regular differences

yA dru : number of regular differences entered by the user

yA s : seasonal frequency

b dsu : number of seasonal differences entered by the user

yA lag : number of lags for the autocorrelations and partial autocor.
/A rp : theoretical autocorrelations

yA pcp : theoretical partial autocorrelations

% cw : confidence interval parameter

18 armafil

function [z,rx1] = armafil(y,omega,delta,b,inc)

b

% This function filters the series y_t wusing the filter nu(z) =

% z b*omega(z)/delta(z), where omega(z)=omega_0O + omega_l*z +

% omega_2*z"2 ++omega_q*z"q and delta(z) = 1 + delta_lxz + ... +
% delta_p*z p.

b

% Input arguments:

% y: the input series

% omega: a (q+1) array containing the coefficients of omega(z) in

pA ascending order
% delta: a (p+1) array containing the coefficients of delta(z) in
pA ascending order

% b: the delay of the filter

% inc: 1 initial conditions for the filter are estimated
b 0 initial conditions equal to zero

h

% Output arguments:

% z: the output series

% rxl: the design matrix for the initial state x_1

39

19 armaid

function oparm=armaid(y,parm,ols,a,maxpq,maxPQ)

b
h
h
h
h
h
h
t
h
o
h
h
h
h
h
h
h
h
o
h
o
h
h
h
h
h
h
h
h
th
h
o
b

this function automatically identifies an ARMA model for a stationary
series using the BIC criterion.

Input arguments:
y: vector containing the data
parm: astructure containing model information, where

s: seasonality

S: second seasonality
.dr: order of regular differencing
.ds: order of differencing of order s
.dS: order of differencing of order S
.p: initial AR order
.ps: initial order of the AR of order s
.q: 1initial order of the regular MA
.gs: initial order of the MA of order s (1 at most)
.gS: initial order of the MA of order S (1 at most)
ols: = 0, use the Levinson-Durbin algorithm in the Hannan-Rissanen

method
= 1, use OLS in the Hannan-Rissanen method
a: the exponent in log(n)~a for the length of the long AR in the
Hannan-Rissanen method. By default, a = 1.5.

maxpq: the maximum orders of the regualr AR and MA polynomials
maxpq: the maximum orders of the seasonal AR and MA polynomials

Output arguments:

oparm: a structure containing the same fields as par plus
.p: AR order

.ps: order of the AR of order s

.q: order of the regular MA

.qs: order of the MA of order s (1 at most)

.pvar: array containing the indices of variable parameters
.pfix: array containing the indices of fixed parameters

20 armaxeZ2armax

function [phi,theta,gamma,ierror] = armaxe2armax(phie,thetae,gammae)
pA
% This function computes VARMAX polynomials with \Phi_O=I_s=\Theta_O.

40

R ————.
% USAGE: [phi,theta,gamma] = armaxe2armax(phie,thetae,gammae)

% where: phie = a k x k polynomial matrix with phi(0) nonsingular
/A thetae = a k x k polynomial matrix
b gammae = a k x m polynomial matrix

.,
% RETURNS:

yA phi = the AR polynomial matrix

h theta = the MA polynomial matrix

yA gamma = the input polynomial matrix

% ierror =1, dimension mismatch in phi and theta
yA =0, there are no errors on input

% ___

21 armaxe2sse

function str = armaxe2sse(str)

% PURPOSE: given a VARMAX model in echelon form, it computes the state
% space echelon form

e

% USAGE: str = armaxe2sse(str)

% where: str = a structure containing the structure of the VARMAX
b in echelon form

Y

% RETURNS: str = a structure containing the previous structure plus

b the state space echelon form matrices according to the
pA following state space model:

h

% alpha_{t+1} = Fs*alpha_{t} + Bs*x_t{t} + Ks*a_{t}

b y_{t} Hs*alpha_{t} + Ds*x_{t} + a_{t}

e

22 arpar

function y=arpar(x,p,ps,q,9s,qS)

%okt ok ook ko ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk s s sk sk s sk sk o ko ok okok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk s sk sk sk sk sk sk sk ok ke kokokokok ook ok ok ok
o

% Given the polynomials of a multiplicative ARMA model, this function

% transforms the coefficients of each polynomial as if they were AR

% coefficients into partial correlation coefficients. This may be used

% as a test for stationarity because a polynomial is stable if, and

% only if, all its partial coefficients are less than one in absolute

41

h
h
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h

value.

INPUTS:
X

P, P
the
More

P :
ps :
q :

gs
gs :

OUTPUTS:
y

coefficients of the polynomials of a multiplicative ARMA
model

S, 4, 9s, g5 : integers specifying where the coefficients of
ARMA model are in x.

specifically,
first p are AR coefficients

starting with the (p+1)th coefficient, the next ps are AR c.
starting with the (p+1+ps+1)th coefficient, the next q are
MA c.

starting with the (p+1+ps+1l+q+1)th coefficient,
the next gs are MA c.

starting with the (p+1+ps+l+q+l+gs+1)th coefficient,
the next gS are MA c.

: partial correlation coefficients of all the polynomials of

the ARMA model

23 aurirvarmapqPQ

function [str,ferror] = aurirvarmapqPQ(str,nr,DA)

% PURPOSE: given a structure containing information about a VARMA
% model, it adds the unit roots information given by nr and DA

e

% USAGE: str = fixvarmaxpqPQ(str)

% where:str = a structure created with function suvarmapqPQ

% nr = number of unit roots in the model

% DA = matrix of the form [DAr Indxr], where DAr is the

pA parameterization of betaor (the unit root part), and
b Indxr is an index vector to identify the 1.i. rows of DAr.
e

% RETURNS: str = a structure containing model information

b
b
h
b
h
b
h

.nr
.ns
.xd

.nparmd:
.xid :

where the following fields have been added:

: number of unit roots in the model
: number of seasonal unit roots in the model (not used)
: parameter vector for betaor, including fixed and variable

parameters
number of parameters for the unit root part
array of ones and zeros, as in xi, for the unit root part

42

yA .xvd : array of parameters to estimate for the unit root part
yA .xfd : array of fixed parameters for the unit root part

24 aurivarmapqPQ

function [str,ferror] = aurivarmapqPQ(str,nr,ns,DA)

% PURPOSE: given a structure containing information about a VARMA

% model, it adds the unit roots information given by nr, ns and DA (
% the output from mcrcreg)

Y

% USAGE: str = fixvarmaxpgqPQ(str)

% where: str = a structure created with function suvarmapqgPQ
.

% RETURNS: str = a structure containing model information

% ___

25 autcov

function [cO,cv,r]l=autcov(y,lag,ic)

sk ok sk ok sk ok ok sk sk ok o sk ok ok ok sk ok oK ok ok ok o sk ok oK ok Kok ok K sk Kok sk ok oK ok Kk ok K sk Kok ok ok ok ok ok ok ok Kok sk ok K ok
h

% This function computes the sample autocovariances and

% autocorrelations of y(t) up to specified lag. The variable has been
% previously demeaned.

T

% INPUTS:

b y : input vector

yA lag : integer specifying up to which lag cv and/or r are computed
b ic = 1: compute autocorrelations

b 0: do not compute autocorrelations

%
% OUTPUTS:

A cO : variance of y
yA cv : autocovariances of y
b r : autocorrelations of y

26 beta cdf

function cdf = beta_cdf(x, a, b)
% PURPOSE: cdf of the beta distribution

43

A
% USAGE: cdf beta_cdf (x,a,b)

% where: x = prob[beta(a,b) <= x], x = vector
% a = beta distribution parameter, a = scalar
b b = beta distribution parameter b = scalar

% NOTE: mean [beta(a,b)], variance = ab/((a+b)*(a+b)*(a+b+1))
e
% RETURNS: cdf at each element of x of the beta distribution

e
% SEE ALSO: beta_d, beta_pdf, beta_inv, beta_rnd

e
% written by: Anders Holtsberg, 18-11-93

yA Copyright (c) Anders Holtsberg

% documentation modified by LeSage to

% match the format of the econometrics toolbox

27 blacktu

function [w, m] = blacktu(n, m, a)

T

% This function computes the weights for the

yA Blackman-Tukey window

2

T INPUTS:

% n : lentgh of the series; required input to compute window lag
b size if m is not input to blacktu

yA m : window lag size

b a : parameter in the window function

T

b OUTPUTS:

yA w : weights of the Blackman-Tukey window
b m : window lag size;

28 bmols

function [beta,M,e]l=bmols(y,Y)

%t ke ot ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok sk sk ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok o
h

% This function computes the OLS estimator, its covariance matrix and

% the white noise residuals. The covariance matrix is not multiplied by
% sigma~2.

h

44

% INPUTS:

b y : data vector

b Y : matrix with regression variables
yA

% OUTPUTS:

% beta : OLS estimator

b M : covariance matrix of beta

% e : residuals

29 bols

function beta=bols(y,Y)
%k sk ok sk ok ok sk sk ok o sk ok ok ok ook ok o ok Kok o sk ok ok ok sk ok o sk o Kok sk ok o sk Kok o sk ok Kok sk ok oK sk Kok o sk ok K ok ok ok K ok Kok

% This function computes the OLS estimator

h

% INPUTS:

yA y : data vector

yA Y : matrix with regression variables
h

% OUTPUTS:

% beta : OLS estimator

30 btval

function [beta,tv,d]=btval(x,ydf)

%otk sk sk sk e sk sk sk sk s o sk sk sk sk ok e ok sk sk sk sk s ok sksk sk sk ok ok sksk sk sk ok ok sk sksk sk s sk sksk sk sk ke sk sksk sk ok sk sk sk sk sk ok sksk ok ok ok
% This function computes the OLS estimator, the t-values and the

% standard errors

b

%» INPUTS:
b X : vector with parameters
b ydf : matrix with the data and regression variables

b

% OUTPUTS:

b beta : OLS estimator

yA tv : t-value of beta

% d : standard error of beta

31 cal

function result = cal(begin_yr,begin_per,freq,obs)

45

% PURPOSE: create a time-series calendar structure variable that

b associates a date with an observation #

Y

% USAGE: result = cal(begin_yr,begin_per,freq,obs)

% or: result = cal(cstruc,obs)

% where: begin_yr = beginning year, e.g., 1982

/A begin_per = beginning period, e.g., 3

yA freq = frequency, l=annual,4=quarterly,12=monthly
/A obs = optional argument for an observation #

yA cstruc = a structure returned by cal()

A —
% RETURNS: a structure:

yA result.beg_yr = begin_yr

b result.beg_per = begin_period

% result.freq = frequency

b result.obs = obs (if input)
yA result.year = year for obs (if input)
/A result.period = period for obs (if input)

% __

% SEE ALSO: ical() an inverse function to find observation #

% associated with a cal-structure date
% tsdate() that returns a string for the date associated
% with observation #

% written by:

% James P. LeSage, Dept of Economics
% University of Toledo

% 2801 W. Bancroft St,

% Toledo, OH 43606

% jpl@jpl.econ.utoledo.edu

32 candec

function [comp,ierrcandec] = candec(phir,phis,thr,ths,phirst,s,dr,ds,sconp)
O st sk sk sk o e sk sk sk o o o sk sk sk sk ok e ok sk sk sk sk s ke sk sk sk sk sk o sk sk sk sk s ke sk sksk sk sk ke sk sk sk sk sk e ke sk sksk ok sk ke sk sk sk sk sk e sk sk sksk ok sk ok
% PURPOSE: This function performs the canonical decomposition of the ARIMA
h model

b phir(B)*phis(B"s)y_t = thr(B)*ths(B s)*a_t

%The innovation variance, sigma2a, is assumed to be unity.

% USAGE: [comp,ierrcandec] = candec(phir,phis,thr,ths,phirst,s,dr,ds,sconp)

h

% Inputs: phir : a polynomial containing the regular AR part

46

mailto:jpl@jpl.econ.utoledo.edu

yA phis a polynomial containing the seasonal AR part

yA thr a polynomial containing the regular MA part

b ths a polynomial containing the seasonal MA part

% phirst a polynomial containing the stationary regular AR part

b s a positive integer, the number of seasons

yA dr : a positive integer, the number of regular differences

b dr : a positive integer, the number of seasonal differences

yA sconp : a positive number, standard deviation of the series model
yA innovations

% Note: all of the previous polynomials are expressed in the same variable.
% The polynomials are given by an array like [a_n, ... a_l, a_0], where

% the polynomial is a_0 + a_1%z + ... + a_n*z n.

h

% Output: comp, a structure containing the following fields

h
h
h
h
h
h
h
h
h
h
b
h
h
%h(*)
h

33

.ptnum=thrc; % trend-cycle numerator

.ptden=phir; % trend-cycle denominator

.ptnur=dr+ds; % number of nonstationary roots in phir
.ptvar=sigma2r; 9 variance of the trend-cycle innovations (%)
.stnum=thsc; % seasonal numerator

.stden=phis; % seasonal denominator

.stnur=(s-1)*ds; J number of nonstationary roots in phis
.stvar=sigma2s; J variance of the seasonal innovations (%)

.rt=thtc; % transitory component (MA term)

.rtvar=sigma2t; J variance of the transitory component innovations (%)
.itvar=sigma2i; Y variance of the irregular component (%)
.sigmaa=sconp; % standard deviation of the series model innovations
.phi=phirst; % stationary AR trend polynomial

pai=p y poly

in units of the series model innovations
ierrcandec : flag for errors

cascade

function [Tsp,Hsp,Zsp,ferror]=cascade(den,Alpha,phip,thp,sigma)

h
h
h
h
h
h
b
h
h

This function obtains a cascade implementation of the state
space form corresponding to the product of filters in the ARMA
model

y_t = [Alpha(z)/den(z)]*[thp(z)/phip(z)] a_t

where a_t is (0,sigma”2). In each factor the degree of the
numerator has to be equal to that of the denominator.

47

yA If z_t = [thp(z)/phip(z)] a_t has a state space form
b

b x"z_{t+1} = T_z x"z_t + H_z*sigma*e_t ¢D)
% Z_t = Z_z x"z_t + sigmaxe_t,

A

yA where Var(e_t)=1, and if y_t = [Alpha(z)/den(z)] z_t has a
/A state space form

h

pA x"y_{t} = T_y x"y_{t-1} + H_y z_t (2)
/A y_t =Z_y x"y_t,

b

yA then the following state space form for y_t is a cascade

pA implementation

b

% x_{t} = [T_.y H_y*Z_zlx_{t-1} + [H_yx*sigma Je_t

b [O T_z] [H_z*sigma]

% yt =1[2Zy 0 Ix_t ,

A

yA where x_t = [x"y_t’> x"z_{t+1}’]’.

yA Here, T_z is a square matrix with dimension equal to the

yA degree of phip(z), T_y is a square matrix with dimension equal
% to the degree of den(z) plus one, and the representations (1)
% and (2) are Akaike’s representations. Note that (1) is minimal
pA while (2) is not.

/A

% Input parameters:

b den : a (1 x nbp) array

yA Alpha a (1 x nal) array

/A phip : a (1 x np+l) array

yA thp a (1 x nt+1) array

b sigma a positive constant

h

b Output parameters:

% Tsp : an (nalpha x nalpha) matrix

% Hsp : an (nalpha x nepsilon) matrix

b Zsp : an (p x nalpha) matrix

34 cascadessml

function [Fsp,Gsp,Hsp,Jsp,ferror]=cascadessml(Fp,Gp,Hp,Fs,Gs,Hs,Js)
yA

yA This function obtains a cascade implementation of the state space

48

h
h
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
b
h
h
o
h
h
h
h
h
h
h
h
h
b
h
h
h
h
h
h

form corresponding to the product of VARMA filters
y_t = As(2)*Ap(z) a_t

where a_t is (0,Sigma).
If z_t = Ap(z) a_t has a state space form

x"p_{t+1}
z_t

F_p x"p_t + G_p*a_t ¢D)
H_p x"p_t + a_t,

and if y_t = As(z) z_t has a state space form

x"s_{t+1}
y_t

F_s x"s_t + G_s*z_t (2)
H_s x"s_t + J_s*z_t,

then the following state space form for y_t is a cascade
implementation

x_{t+1} = [F_s G_s*H_plx_t + [G_s Ja_t
[O Fp 1 [G_p]
y.t = [H.s J_s¥H plxt + [J_s Ja_t,

where x_t = [x"s_t’ x"p_t’]’.
The representations (1) and (2) are
Akaike’s representations. Note that (1) and (2) are minimal.

Input parameters:

Fp : an (np x np) matrix
Gp : an (np x n) matrix
Hp : an (n X np) matrix
Fs : an (ns X ns) matrix
Gs : an (ns x m) matrix
Hs : an (m X ns) matrix
Js : an (m X ns) matrix

OuFput parameters:

Fsp : an (nalpha x nalpha) matrix, nalpha = np + ns.
Gsp : an (nalpha x 1) matrix

Hsp : an (m x nalpha) matrix

Jsp : an (m x ns) matrix

49

35

cbic

function bic = cbic(x,yd,nd,s,p,ps,q,qs)

b
h
h
h
h
h
h
h

hp

o
h
h
h
h
h

36

this function computes the BIC criterion of an ARMA model

Input arguments:

X : array containing model parameters
yd: vector containing the data

nd: length of yd

s: number of seasons

AR order

ps: order of the AR of order s
q: order of the regular MA
gs: order of the MA of order s

Output arguments:
bic: the bic criterion

chkroots

function chk=chkroots(x,p,ps,q,qs,qS)
ok ook ok ook ok ok ok ook K ok K ok ok ook K ok K K ok ok ook K ok K ok ok ok ok K ok Kok K ok ok K ok Kok K ok ok o

% This function tests whether all roots of the polynomials of a
% multiplicative ARMA model are outside of the unit circle

h
h
h
h
2
h
o
h
h
h
h
h
h
h
h
h
h

INPUTS:
X

coefficients of the polynomials of a multiplicative ARMA
model

P, PS, 4, 9s, 98 : integers specifying where the coefficients of
the ARMA model are in x.
More specifically,

p:

ps ¢
q :
gs

gs :

OUTPUT:

first p are AR coefficients

starting with the (p+1)th coefficient, the next ps are AR c.
starting with the (p+1l+ps+1)th coefficient, the next q are
MA c.

starting with the (p+l+ps+l+q+1)th coefficient,

the next gs are MA c.

starting with the (p+1+ps+l+q+1+qgs+1)th coefficient,

the next gS are MA c.

20

h
b

37

chk = 0 : roots are outside the unit circle
= 1 : roots are not outside the unit circle
chkstainv

function ierror=chkstainv(Fs)

% new function: 21-1-2011

% This function checks wether the matrix Fs has eigenvalues with modulus
% greater than or equal to one.

38

chmarima

function [y,Xm,nmiss,idnx]=chmarima(y)

h
h
h
h
o
b
o
h
h
h
h
h
h
h

39

this fu

INP
y:

0uT
y:

nction checks whether there are missing values in the series

UTS:
an array containing the input series

PUTS:
an array containing the input series with the missing values
replaced with tentative values

Xm: a regression matrix whose columns have zeros except for the
observation numbers of the missing values in which it has
ones

nmiss: number of missing observations
idxn: index for missing values

.

cinest

function x0 = cinest(y,Y,parm,est,ols,a,prt,fid)

h
h
b
h
h
o
h
o
h
h

function t

o estimate initial parameter values in an ARIMA model

INPUTS:

y
Y

parm

input series

: matrix of regression variables

: a structure, containing the ARIMA specification. It
should have al least the following fields:

.8 : seasonality

51

b .S : second seasonality

pA .p : degree of regular AR polynomial
/A .d : degree of regular differencing
% .q : degree of regular MA polynomial

b .ps: degree of seasonal AR polynomial

yA .ds: degree of seasonal differencing

pA .qs: degree of seasonal MA polynomial

yA .dS: degree of second seasonal differencing

b .qS: degree of second seasonal MA polynomial

yA est = 1 : estimation of regression coefficients

% = 0 : no estimation of regression coefficients

% ols : =1, perform OLS, = O, use the Durbin Levinson

yA algorithm in the HR method

b a : an integer, the degree of the AR approximation in the
pA first step of the Hanna-Rissanen method.

% prt : =1, print results in an external file, = 0, do not
b print

b fid : an integer, corresponding to an externmal file

T
% OQUTPUTS:
yA x0 : an array containg the initial estimated values

40 cleanpmat

function [M, gM] = cleanpmat(M, tol)

%t ke ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok sk ok ok sk ok sk sk sk o e o ok ok ok sk sk ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok sk sk ok ok ok
% This function cleans a polynomial matrix of small entries (in

% relation to its L1 norm) and if neccesary reduces its order

% afterwards

b

% INPUTS:
% M : (nxmzx p) polynomial matrix
% tol : tolerance value

o
% OUTPUTS:

yA M: (nxmzx (gM+1)) polynomial matrix after elimination of
A small entries
yA gM : final order of the polynomial matrix

%***

52

41 cleanpol

function p = cleanpol(p, tol)

% This function cleans a polynomial of small entries (in relation to its
% L1 norm) and if neccesary reduces its order afterwards

% INPUTS:

% p : (n x 1) polynomial coefficients

pA tol : tolerance value

h

% OUTPUTS:

% p : polynomial after elimination of small entries

42 cohepha

function [co,ph,gal=cohepha(cxy,qxy,fxx,fyy)
h

% This function computes the coherence, gain and phase
b (see Granger’s book)

b

% INPUTS:

% ____________

/A cxXy : cospectrum

% gxy : quadrature spectrum

yA fxx : (smoothed) periodogram of x

yA fyy : (smoothed) periodogram of y

h
h
b OUTPUTS:
R —

% co : coherence
b ph : phase angle
b ga : gain

43 coincid

function mncoin=coincid(nind,eind)

h

% this function detects the number of coincidences between the
% present and the past search for outliers

h

% Input arguments:

% nind: array containing the time index of the present outliers

93

% eind: array containing the time index of the previous outliers
% Output arguments:
% ncoin: number of coincidences

44 compresde(

function [resid,sigmar]=compresdel(y,x,str)

% PURPOSE: given a structure, it computes the

% model residuals and their covariance matrix using the difference
% equation, starting with zeros.

A —
% USAGE: [resid2,sigmar2]=compresdeO(y,x,str)

% where: y = an (nobs x neqs) matrix of y-vectors

yA X = matrix of input variables (nobs x nx)

b str = a structure containing the model information

o
% RETURNS: resid = the residuals
yA sigmar = the residuals covariance matrix

% ___

45 compresex

function [resid,E,rSigmat]=compresex(y,x,str,tol,maxupdt,Y)

% PURPOSE: given a structure, it computes the model residuals and their
% covariance matrices using the square root CKMS recursions
o

% USAGE: [resid2,sigmar2]=compresex(y,x,str)

% where: N an (nobs x negs) matrix of y-vectors

pA X = matrix of input variables (nobs x nx)

b str a structure containing the model information
pA an (nobs x (negs x nbeta)) regression matrix
e

% RETURNS: resid = the residuals

<
I

/A E = the augmented part of the residuals if Y is not
pA empty
pA rSigmat = the Cholesky factors of the covariance matrix of

% residuals

% ___

o4

46 conmedfjac

function [fjac,gl=conmedfjac(beta,y,x,str)

b
h
h
h
h
o
h
h
h
h
h
b

PURPOSE: this function computes the jacobian and the gradient
corresponding to a VARMAX model

USAGE: [fjac,gl=conmedfjac(beta,y,x,str)

where: beta = a (1 x nparma) vector of parameters
v = an (nobs x neqs) matrix of y-vectors
X = matrix of input variables (nobs x nx)
str = a structure containing the model information

RETURNS: fjac = the jacobian
g = the gradient

47 conmedfv

f
h
o

h
b
h
b
h

h
o
h
o
h
h
h
h
h
h
h
h
th

unction [residv,beta,str]=conmedfv(beta,y,x,str)
PURPOSE: given a structure, it computes the model residuals and their
covariance matrix using the third step parameters of HR method.

USAGE: [residv,beta,str]=conmedfv(beta,y,x,str)

where: beta = an (1 x nparm) vector of parameters
y = an (nobs x neqgs) matrix of y-vectors
X = matrix of input variables (nobs x nx)
str = a structure containing the model information

RETURNS: residv = the residuals
beta = an [(nparm + s) x 1] vector containing the
parameters, where
nparm : number of parameters
s : number of ouputs

str = updated structure containing the model information
More specifically, if the model corresponding to
str that is input to conmedfv is nonstationary or
noninvertivble, an appropriate transformation is
made to the AR or the MA part of the model to make
them stable. The transformed parameters are in the
updated field vgams.

95

48

constant

function ct=constant(N,cons,dr,ds,dc,xc,s)
O sk ke sk sk sk ok ok sk sk ok ok sk s ks sk ok ok sk sk ok sk sk ks sk ok ok sk ke sk ok sk o ks sk ok ok sk e sk sk sk ok ok sk sk ok ok sk s sk ok sk sk sk ok ok

h
h
h
h
h
h
t
h
o
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
o
h
h

49

INPUT

N :

This function generates a constant variable

for an ARIMA model that can have as nonstationary
autoregressive part

D(B) = (1-B)~dr (1-B"s)"ds (1-2cos(xc)B+B~2)"dc, (1
where 0<=dr<=2, 0<=ds<=1, and 0<=dc<=5.

The model is

D(B)z_t = cons + ARMA (2)
and the generated variable is

ct = cons/D(B) (3)

S:
length of the data vector

cons : constant in eq.(2)

dr : regular differences

ds : seasonal differences

dc : integer such that dc*2 is order of (1-2cos(xc)B+B~2)7dc

xc : frequency in the polynomial (1-2cos(xc)B+B~2);
0 < xc < pi => |cos(xc)| < 1, implying that the polynomial
has two complex conjugate roots with modulus one

s : frequency of the data

OUTPUTS:
ct : constant given by eq.(3)
constantx

function ct=constantx(N,cons,dr,ds,dS,dc,xc,s,S)
Of sk sk sk ok o ok sk sk o o o ok sk sk o o o ok sk sk o sk ok sk sk o sk o ok sk sk sk o o ok sk sk sk o s ok ok sk sk o o ok sk sk o o s sk sk sk o sk ok sksk o ok o ok

h
h
h
h

This function generates a constant variable
for an ARIMA model that can have as nonstationary
autoregressive part

o6

pA D(B) = (1-B)"dr (1-B"s)"ds (1-B~S)"dS (1-2cos(xc)B+B~2) dc, 1)
yA

% where 0<=dr<=2, 0<=ds<=1, 0<=dS<=1, and 0<=dc<=5.

o

b The model is

h

yA D(B)z_t = cons + ARMA 2
h

b and the generated variable is

h

pA t = cons/D(B) 3
h

% INPUTS:

b N : length of the data vector

% cons : constant in eq.(2)

b dr : regular differences

yA ds : first seasonal differences

A dS : second seasonal differences

yA dc : integer such that dc*2 is order of (1-2cos(xc)B+B~2)7dc

yA xc : frequency in the polynomial (1-2cos(xc)B+B72);

yA 0 < xc < pi => |cos(xc)| < 1, implying that the polynomial
pA has two complex conjugate roots with modulus one

yA s : first frequency of the data

pA S : second frequency of the data

h
% OUTPUTS:
b ct : constant given by eq.(3)

50 copmut

function [U, T] = copmut(Um, Tm, ColsUT, da, du, n, m, full)

% this function computes the Unimodular polynomial matrices U and T

% It is used in function pmattrian.

% Author Felix Aparicio-Perez, Instituto Nacional de Estadistica, Spain

51 cospqu

function [c,ql=cospqu(x,y,win)

b

b This function computes the (smoothed) cross-periodogram
yA and the quadrature spectrum

h

o7

h
h
h
h
h
h
h
h
h
h
h
h
o
h

INPUTS:

X,y : series
win : window used for smoothing the periodogram;

0 : no smoothing is performed
1 : Blackman-Tukey window

2 : Parzen window

3 : Tukey-Hanning window

OUTPUTS:
C : cospectrum
q : quadrature spectrum

92 crcreg

f
h
h
h
h
o
h
h
h
h
h
h
h
h
h
h
h
h
h

unction [nrl,nsl,nr,ns]=crcreg(y,s,maxr)

This function applies the CRC criterion to the y series. It is based
on the paper "A Strongly Consistent Criterion to Decide Between I(1)
and I(0) Processes Based on Different Convergence Rates" by
V\’{\i}ctor G\’{o}mez, (2013), Communications in Statistics -
Simulation and Computation, 42, pp. 1848-1864.

Input arguments:

y : series

s : number of seasons

maxr : maximum regular differencing order considered

Output arguments:

nrl: number of regular differences found in the first step
nsl: number of seasonal differences found in the first step
nr: number of regular differences found

ns: number of seasonal differences found

o8

53 crcregr

54 croscor

f
h
h
h
h
h
b
h
h
h
b
h
b
o
h
h
h
h
h
b
h

unction [cr,stdx,stdyl=croscor(x,y,lag)

This function computes the correlation between x(t) and
y(t+lag). Lag can be both positive and negative.

INPUTS:
REQUIRED
X,y : series; y = x, if autocorrelations are to be computed

OPTIONAL
lag : number of lags at which the correlations are to be
computed lag = length(y)-1, if lag is not input to
croscor or if lag is empty

OUTPUTS:
Ccv : correlations between x and y
stdx : standard deviation of x
stdy : standard deviation of y

55 croscov

f
h
h
h
h
b
o
h
o
h
h
h
h
/.

unction cv=croscov(x,y,lag)

This function computes the covariance between x(t) and y(t+lag).
Lag can be both positive and negative.

INPUTS:

REQUIRED
X,y : series; y = x, if autocovariances are to be computed

OPTIONAL

lag : number of lags at which covariances are to be computed
lag = length(y)-1, if lag is not input to croscov or if lag

29

h
b

is empty

h OUTPUT:

Ymmmmmmm e

/A Cv : covariances between x and y
56 crosspan

function [co,ph,ga,fx,fy,frql=crosspan(x,y,win)

h
h
h
h

This

function performs a cross spectral analysis.

See Granger’s book for definitions.

T INPUTS:

R —

YA x : reference series

b y : other series

yA win : window used for smoothing the periodogram;
b = 0 : no smoothing is performed
b = 1 : Blackman-Tukey window

b = 2 : Parzen window

b = 3 : Tukey-Hanning window

b OUTPUTS:

—

/A co = coherence

b ph = phase delay

b ga = gain

b fx = periodogram for x

b fy = periodogram for y

% frq= frequencies

57 csigsets

function [Sig, ColsUT, Cs, Ncs] = csigsets(SigBar, dtot, du, n, m)

% This routine extracts the Ci sets and, if possible, a triangular

% shape of size m

% Author Felix Aparicio-Perez, Instituto Nacional de Estadistica, Spain

58

cTheta

function [Theta,D]=cTheta(n,T,Sigma,phi,th)

60

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
b
h
h

59

this function computes the lower triangular matrix, Theta, such
that

\Phi*L = \Theta

using the CKMS recursions corresponing to an ARMA model.
The series is assumed to be stationary. The state space model is

x_ {t} =T x_{t-1} + H a_{t}
y_{t} =27 x_{t},

where Var(x_{1}) = Signma.

INPUTS:
T: the T matrix
Sigma: the Sigma matrix
phi: an array containing the AR polynomial
th: an array containing the MA polynomial

OUTPUTS:

Theta: lower triangular matrix such that \phi*L = \Theta
D: diagonal matrix containing the standar errors

cumnor

function [Result,Ccum] = cumnor (Arg)

h
h
h

%C**

%C
%C
%C
%C
%C
%C
%C
%C
%C
%C
%C

Last change: BCM 21 Nov 97 10:07 pm
SUBROUTINE cumnor (Arg,Result,Ccum)
IMPLICIT NONE

SUBROUINE CUMNOR(X,RESULT,CCUM)

Function

Computes the cumulative of the normal distribution,
i.e., the integral from -infinity to x of
(1/sqrt (2*pi)) exp(-u*u/2) du

61

WC X --> Upper limit of integration.

C X is DOUBLE PRECISION

hC

A RESULT <-- Cumulative normal distribution.

C RESULT is DOUBLE PRECISION
%C

C CCUM <-- Compliment of Cumulative normal distribution.

WC CCUM is DOUBLE PRECISION
hC

%C

C Renaming of function ANORM from:

hC

C Cody, W.D. (1993). "ALGORITHM 715: SPECFUN - A Portabel FORTRAN
WC Package of Special Function Routines and Test Drivers"

%C acm Transactions on Mathematical Software. 19, 22-32.

hC

%C with slight modifications to return ccum and to deal with

C machine constants.

%C

%C**

60 dbptanbut

function [compf,ferror]=dbptanbut(D,0Omegapl,Omegap2,0megas2,Di,Thetac,...
Lambda)

A

% This function obtains the band-pass filter based on the Butterworth

% tangent filter corresponding to the parameters D(1), D(2), Omegapl,

% Omegap2, Omegas2. See "The Use of Bitterworth Filters for Trend and Cycle
% Estimation in Economic Time Series", G\’{o}mez, V. (2001), Journal of

% Business and Economic Statistics, 19, 365-373.

% The filter model is

b

% z_t
% Alpha(B)s_t
b

% where Alpha(z) = (1 - 2%Alph*z + z"2)7°Di, num(z) = (1 - z°2)°Di, and n_t
% and b_t are independent white noises.

b

% The filter numerator is num*(1/sa). The filter denominator is den. Thus,
b

% H(z) = (1/sa)*(num(z)/den(z))

st +n_t,
num(B)b_t, Var(b_t)=1

62

T

% The other filter is

h

% G(z) = (sqrt(Lambda)/sa)*(Alpha(z)/den(z))

h

% Input parameters:

h
h
h
h
h
h
o
h
h
h
h
h

D

Omegapl

Omegap2 :
Omegas2 :

Di

Thetac

Lambda

: a (1 x 2) array containing the design tolerances D1 and D2.

It can be empty.

: a number, design frequency Omegapl divided by pi. Required.

a number, design frequency Omegap2 divided by pi. Required.
a number, design frequency Omegas2 divided by pi. It can be
empty

: a number, the exponent in Alpha(z) and num(z). It can be

empty.

: a number, the frequency, divided by pi, of gain .5 in the

But. tan. filter. It can be empty.

: a number, the signal to noise ratio (sigma”2_n/sigma”2_b)

in the But. tangent filter. It can be empty.

% Note: The usual specification is D, Omegapl, Omegap2 and Omegas2 (Di,
Thetac and Lambda empty). Alternatively, the user can enter
Omegapl, Omegap2, Di and Thetac (D, Omegas2 and Lambda empty) or
Omegapl, Omegap2, Di and Lambda (D, Omegas2 and Thetac empty).

h
h
b
h

% Output parameters: compf, a structure containing the following fields

h
o
h
h
h
h
h
h
h
h
o
h
o

61

.nterml
.nterm2
.terml
.term?2
.num
.den
.sa
.Alpha
.Alph
.Di

.Thetac :
.Lambda :

: number of factors of degree 2 in den polynomial below
: number of factors of degree 4 in den polynomial below
: factors of degree 2 in den polynomial below
: factors of degree 4 in den polynomial below

polynomial of degree 2*Di, (1 - z"2)°Di

polynomial of degree 2x*Di

positive number (sigmaa)

polynomial of degree 2*Di, (1 - 2*Alph*z + z~2)°Di
number, in Alpha(z) = (1 - 2xAlph*z + z~2)°Di

positive integer

number, the frequency of gain .5 in the But. tan. filter
positive number, the square root of the noise to signal
ratio (sigma”2_n/sigma”2_b) in the But. tangent filter.

PP PP PR

deltafil

function ct=deltafil(x,dr,ds,dc,xc,s)
Of sk sk sk ok o ok sk sk o o o ok sk sk o o o ok sk sk o o ok sk sk o sk o ok sk sk sk o o sk sk sk o o ok sk sk o o o ok sksk ok o o sk sk o ok ok skok ok ok o ok

63

yA This function generates a filtered variable

pA for an ARIMA model that can have as filter

h

% D(B) = (1-B)"dr (1-B"s)"ds (1-2cos(xc)B+B~2)"dc,

h

% where 0<=dr<=2, 0<=ds<=1, and 0<=dc<=5.

h

% The filtered variable, ct, satisfies

h

h D(B)ct_t = x_t

h

% INPUTS:

% X : input series

/A dr : regular differences

% ds : seasonal differences

b dc : integer such that dc*2 is order of (1-2cos(xc)B+B~2) dc
yA xc : frequency in the polynomial (1-2cos(xc)B+B~2);

b 0 < xc < pi => |cos(xc)| < 1, implying that the polynomial
yA has two complex conjugate roots with modulus one

yA s : frequency of the data

%
% QOUTPUTS:
yA ct : filtered series

62 diferm

function yd=diferm(y,s)
U4k ok ok sk ok ok sk ok ok o sk ok ok ok ok ok o ok o Kok o ok ok ok ok sk ok K sk Kok sk ok oK ok Kok ok Kok sk ok oK ok Kok ok Kok ok ok ok ok ok

% This function computes differences of order s for matrices

h

% INPUTS:

b y : data matrix

yA s : order of differencing

% OUTPUT:

yA yd : data matrix after differencing

63 diffest

function [yd,betal=diffest(y,Y,s,S,dr,ds,dS,est)
O st sk sk sk sk sk ok sk sk s ok ok sk sk s o s ok sk sk sk s sk ok sk sk sk sk ok sk sk sk sk sk ok sk sk sk sk sk ok sksk sk sk ok kst sk ok sk ok sk sksk sk sk ok sksk sk ok ok

% This function computes differences of the data vector and the matrix with
% regression variables and optionally performs estimation of regression

64

% coefficients

h
h
h
h
h
h
h
h
h
h
h
o
h
h
h

INPUTS:
y

Y

s

S

dr :

ds :

das :

est =

OUPUTS:

yd
beta :

data vector

: matrix with regression variables
: frequency of the data, number of seasons
: number of periods in each season

regular differences

seasonal differences corresponding to s (1 - B7s)"ds
differences corresponding to S (1 - B~S)"dS

1 : estimation of regression coefficients

O : no estimation of regression coefficients

: data vector after differencing

OLS estimator of the coefficients of the regression variables

64 distnj

function [pj,qjl=distnj(n,j,p,q)

given p and q of a signature matrix J=diag(I_p,-I_q) such that
n=p+q and j<=n, this function returns integers pj and qj such
that diag(I_pj,-I_qj) is the submatrix of J formed with the last
n-j+1 rows and columns. Any of p, q, pj or qj can be zero.

h
b
h
h
h
h
h
h
h
h
b
h
b
h
h

USAGE: [pj,qjl=distnj(n,j,p,q)

where:

n = integer

j = integer <= n

p,q= integers such that J = diag(I_p,-I-q) is a signature
matrix with n=p+q

65 dlyapsq

function v=dlyapsq(a,b)
Solves the discrete Lyapunov equation AV’VA’ - V’V +BB’

h
h

=0

% V is upper triangular with real non-negative diagonal entries

65

h
h
h
h
h
h
h

this is equivalent to v=chol(dlyap(a,b*b’)) but better conditioned
numerically
Copyright (C) Mike Brookes 2002
Version: $Id: dlyapsq.m 713 2011-10-16 14:45:43Z dmb$
VOICEBOX is a MATLAB toolbox for speech processing.
Home page:
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

66 dsinbut

function [compf,ferror]=dsinbut(D, Thetap,Thetas,Di,Thetac,Lambda)

h
h
h
h
h
h
h
h
b
h
h
h
h
h
h
h
h
h
h
b
o
h
h
h
h
h
h
h
h
h
h

This function obtains the sine Butterworth filter corresponding to the
parameters d (differencing degree) and xc (frequency where gain is 1/2).

See "The Use of Bitterworth Filters for Trend and Cycle Estimation in
Economic Time Series", G\’{o}mez, V. (2001), Journal of Business and Economic
Statistics, 19, 365-373.

The filter model is

Z_t =s_t +n_t,
Alpha(B)s_t = b_t, Var(b_t)=1
where Alpha(z) = (1 - z)°Di and n_t and b_t are independent white noises.

The filter numerator is (1/sa). The filter denominator is den. Thus,
H(z) = (1/sa)*(1./den(z))
The other filter is
G(z) = (sqrt(Lambda)/sa)*(Alpha(z)/den(z))
Input parameters:
D : a (1 x 2) array containing the design tolerances D1 and D2.

It can be empty.
Thetap : a number, design frequency Thetap divided by pi. It can be

empty.

Thetas : a number, design frequency Thetas divided by pi. It can be
empty.

Di : a number, the exponent in Alpha(z). It can be empty.

Thetac : a number, the frequency, divided by pi, of gain .5 in the
But. sine filter. It can be empty.

66

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

h
h
h
o
h
h
h
h
h
h
h
h
o
h
o
h

Lambda : a number, the signal to noise ratio (sigma"2_n/sigma”2_b)
in the But. sine filter. It can be empty.

Note: The usual specification is D, Thetap and Thetas (Di, Thetac and
Lambda empty). Alternatively, the user can enter Di and Thetac (D,
Thetap, Thetas and Lambda empty) or Di and Lambda (D, Thetap,
Thetas and Thetac empty).

Output parameters: compf, a structure containing the following fields

.num = 1. (filter numerator)

.den a polynomial of degree Di (filter denominator)

.sa a positive number

.Alpha : a polynomial, (1 - z)°Di

.Di : a positive integer

.Thetac : a number, the frequency of gain .5 in the But. sine filter
.Lambda : a positive number, the square root of the noiese to signal

ratio (sigma”2_n/sigma”2_b) in the But. sine filter.

67 dtanbut

function [compf,ferror]=dtanbut(D, Thetap,Thetas,Di,Thetac,Lambda)

h
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
b
h
h

This function obtains the tangent Butterworth filter corresponding to the
parameters d (differencing degree) and xc (frequency where gain is 1/2).

See "The Use of Bitterworth Filters for Trend and Cycle Estimation in
Economic Time Series", G\’{o}mez, V. (2001), Journal of Business and Economic
Statistics, 19, 365-373.

The filter model is

z_t
Alpha(B)s_t

st +n_t,
num(B) b_t, Var(b_t)=1

where Alpha(z) = (1 - z)°Di, num(z) = (1 + z)"Di, and n_t and b_t are
independent white noises.

The filter numerator is (1/sa). The filter denominator is den. Thus,
H(z) = (1/sa)*(num(z)/den(z))
The other filter is

G(z) = (sqrt(Lambda)/sa)*(Alpha(z)/den(z))

67

h
h
h
o
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
h
h
h
o
h
o

Input parameters:
D : a (1 x 2) array containing the design tolerances D1 and D2.
It can be empty.
Thetap : a number, design frequency Thetap divided by pi. It can be

empty.

Thetas : a number, design frequency Thetas divided by pi. It can be
empty.

Di : a number, the exponent in Alpha(z). It can be empty.

Thetac : a number, the frequency, divided by pi, of gain .5 in the
But. tangent filter. It can be empty.

Lambda : a number, the signal to noise ratio (sigma”2_n/sigma”2_b)
in the But. tangent filter. It can be empty.

Note: The usual specification is D, Thetap and Thetas (Di, Thetac and
Lambda empty). Alternatively, the user can enter Di and Thetac (D,
Thetap, Thetas and Lambda empty) or Di and Lambda (D, Thetap,
Thetas and Thetac empty).

Output parameters: compf, a structure containing the following fields
.num : a polynomial of degree Di, (1 + z)"Di (filter numerator)
.den a polynomial of degree Di (filter denominator)

.sa : a positive number
.Alpha : a polynomial, (1 - z)°Di
.Di : a positive integer

.Thetac : a number, the frequency of gain .5 in the But. tan. filter

.Lambda : a positive number, the square root of the noise to signal

ratio (sigma”2_n/sigma”2_b) in the But. tangent filter.

68 dtimesy

function [yd,ferror]=dtimesy(D,y)

h
o
h
h
h
h
h
h
h
h
h
h

This function obtains the series

yd_t = D(B)*y_t,
where D(z)=D_0 + D_1%z + + D_r*z"r is a polynomial matrix
compatible with y_t and B is the backshift operator, By_t = y_{t-1}.

Input arguments:
D: an xmx r polynomial matrix
y: an m X s matrix

Output arguments:
yd: the series D(B)*y_t

68

69 duplication

function d = duplication(n)

% duplication(n)

% Returns Magnus and Neudecker’s duplication matrix of size n
% Author: Thomas P Minka (tpminka@media.mit.edu)

70 durid

function oparm=durid(y,Y,infm,parm,ser,ols,a,durval,fid,fmarqdt)

h

% this function automatically estimates the duration period of the
% Easter effect for an ARIMA model with Easter correction

h

% Input arguments:

% y: vector containing the data

% Y: matrix containing regression variables

yA infm : structure containing function names and optimization

b options

b S a function to evaluate the vector ff of individual functions
yA such that ff’*ff is minimized

b .tr >0 x is passed from marqdt to f but not passed from f to

YA marqdt

b =0 x is passed from marqdt to f and passed from f to marqdt
yA .tol: a parameter used for stopping

pA .jac: =1 evaluation of jacobian and gradient at the solution is
yA performed

pA =0 no evaluation of jacobian and gradient at the solution
yA is performed

% .maxit: maximum number of iterations

b .nu0: initial value of the nu parameter

% .prt: =1 printing of results

b =0 no printing of results

% parm: astructure containing model information, where
% s: seasonality

% S: second seasonality

% .p: AR order

% .ps: order of the AR of order s

% .q: order of the regular MA

% .qs: order of the MA of order s (1 at most)

% .9S: order of the MA of order S (1 at most)

% .dr: order of regular differencing

69

mailto:tpminka@media.mit.edu

% .ds: order of differencing of order s

% .dS: order of differencing of order S

% .pvar: array containing the indices of variable parameters
% .pfix: array containing the indices of fixed parameters

% ser : a structure containing the series parameters (the ones

yA specified by the user in the spec file and the default ones)
% ols : =1, perform OLS, = 0, use the Durbin Levinson algorithm in
pA the HR method

% a : an integer, the degree of the AR approximation in the first
yA step of the Hanna-Rissanen method.

% durval : an integer array containing the possible days previous to
% Easter (0 is also a value)

% fid : the number of the external output file

% fmarqdt: a parameter for the estimation method

pA 1 Levenberg-Marquardt method

b 0 Lsgnonlin (Matlab)

h

% Output arguments:

% oparm: the input parm structure plus the field

% .dur : the estimated duration of the Easter effect

71 durlev

function [fi,pcl=durlev(c0,cv)

%ok kot ok ok ook ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk s s ok sk sk sk o ok ok ok ok koo ok sk ok ok ok kokokokok ok ok ok
% This function applies the Durbin-Levinson algorithm to fit an AR

% model of order p = length(cv), given the autocovariances cv and the

% variance c0. As a byproduct, it also gives the partial

% autocorrelation coefficients.

b

% INPUTS:
yA cO0 : variance
b cv : an (1 x p) vector containing the i-th covariances, i=1,...,p.

h
% OUTPUTS:

yA fi : an (1 x p) vector containing the AR(p) polynomial
b pc : an (1 x p) vector containing the partial correlation
yA coefficients

pA
% notation of fi is that of Box and Jenkins:
h y@)-fi(D*yt-1)-...-fi(p)*y(t-p) = a(t)

70

72 durwat

function Dw = durwat(Res,J,K,Ss)
O sk ke sk sk sk ok ok sk sk ok ok sk ke sk sk sk ok ok sk ke sk ok ok sk e sk sk sk ok ok sk ke sk ok sk o ok sk sk ok ok sk ke sk ok sk o ok sk sk ok ok sk s sk ok sk sk ok ok ok

% This function computes the Durbin-Watson statistic

T

% INPUTS:

b Res : residual vector

yA J : number of first residuals in Res not used in the

b computation of Dw

yA K : integer specifying the last residual in Res used in the
b computation of Dw

yA Ss : variance of Res

/A

% OUTPUT:

b Dw : Durbin-Watson statistic

73 east

function Y=east(Iy,Im,N,Idur,Mq,Yd)

o

% this function generates the variable used to correct for Easter

% effect. Given the initial year Iy, the initial month Im, the desired

% length of the series N, and the duration of the effect Idur, the function
% computes for each month the proportion of the period Idur before Easter

% which falls in that month. It works for the period 1901-2099.

h

% input variables Iy : the initial year

b Im : the initial period

b N : the length of the desired vector

/A Idur : the length of the period before Easter
b that the effect is thought to prevail
/A Mg : the series frequency (=12 for monthly,
b =4 for quarterly)
b Yd : 199 x 2 array containing the dates of
h Easter

% output variables Y : N x 1 array containing the variable}

74 eastdate

function Y=eastdate

T

71

% Dates of Easter from 1901 to 2099: first column month, second column day.
% Thus, to obtain the date of Easter for year 2004, first compute

% 1=2004-1900=104. Then Y(104,:)= 4, 11 gives the result. The eleventh of
% April is the date of Easter for 2004.

75 enfinvp

function [str,ierror] = enfinvp(str)

% PURPOSE: enforces invertibility in a VARMAX model in echelon form

b using polynomial methods

Y

% USAGE: str = enfinv(str)

% where: str is a structure containing all the information about the
/A model

e

% RETURNS: the same structure with the invertible model
e

76 enfstab

function vgam=enfstab(stre,pol)

h

% This function multiplies the parameters of a matrix polynomial by some
% factor of the form .95"n until it becomes stable (all roots outside

% the unit circle).

h

% Input arguments:

% stre: a structure, containing model information. In particular,

% stre.vgams: vector containing the parameters of the polynomial matrix

% in the form vec(phi_1),...,vec(phi_r),
% vec(theta_0),vec(theta_1), ..., vec(theta_r),
b vec(gamma_0), ... ,vec(gamma_r)

% pol: ’phi’ or ’theta’

h

% Output arguments:

% vgam: the parameter vector containing corresponding to the stable
b polynomial matrix

77 enfstabpol

function polt=enfstabpol(pol)

72

h
% This function multiplies the parameters of a matrix polynomial by some
% factor of the form .95"n until it becomes stable (all roots outside

% the unit circle). That is, Polynomial P(z) is transformed into

% P(lambdaxz)

h

% Input arguments:

% pol: a matrix polynomial

h

% Output arguments:

% polt: where polt(z)

pol(lambda*z)

78 enfstap

function [str,ierror] = enfstap(str)

% PURPOSE: enforces stationarity in a VARMAX model in echelon form

b using polynomial methods
R

% USAGE: str = enfstap(str)

% where: str is a structure containing all the information about the
b model

e

% RETURNS: the same structure with the stationary model

Y

79 estvarmaxkro

function [str,ferror] = estvarmaxkro(y,x,seas,kro,hr3,finv2,mstainv,nsig,tsig)
% PURPOSE: estimates a VARMAX model in echelon form using the

pA Hannan-Rissanen method (function MHANRIS). It returns a

b structure containing the estimated model. The estimated

yA model is forced to be stationary and invertible.

b After having estimated a VARMAX model with ESTVARMAXKRO, the
yA user can impose some zero restrictions in the model and

b re-estimate the model using the MHANRIS function.

e
% USAGE: [str,ferror] = ...

% estvarmaxkro(y,x,seas,kro,hr3,finv2,mstainv,nsig,tsig)
% where: y = an (nobs x neqs) matrix of y-vectors

b X = matrix of input variables (nobs x nx)

pA (NOTE: constant vector automatically included)
/A seas = seasonality

73

yA kro = an (1 x neqs) array containing the Kronecker
b indices

b hr3 = 1, perform only the first two stages of the HR

b method

b 0, perform the three stages of the HR method, but
yA only if the second stage model is invertible.

% finv2 = 1, make model invertible after second stage of HR
yA 0, leave model as it is after second stage of HR
yA mstainv = 1, use the DARE for enforcing stationarity or

yA invertibility. This can only be used when there

b are no restrictions in the model.

yA = 0, use multiplication by a small number.

pA nsig = a (1 x 2) array. If nsig(i)=1, eliminate

b nonsignificant parameters after the i-th stage of
% the HR method, i=1,2. Default nsig=[0 0];

b tsig = a (1 x 2) array. If the t-value is less than

yA tsig(i), the parameter is eliminated after the

b i-th stage of the HR method and the model is

yA re-estimated, i=1,2.

/A Default tsig=[.75 1.].

% If the three stages of the Hannan-Rissanen method are performed,

% residuals based on the difference equation are also obtained using the
% third stage estimates
R —

% RETURNS: str = a structure containing the estimated parameters with

pA the following fields (see function MHANRIS)

/A s: number of outputs (negs)

yA m: number of inputs (nx)

pA kro: a (1 x s) vector containing the Kronecker indices

yA phi: an (s x s x maxkro) array with NaNs as parameters

yA theta: an (s x s x maxkro) array with NaNs as parameters

yA gamma: an (s x m x maxkro) array with NaNs as parameters

% nparm: number of parameters

yA npar: an (s x s) array to define the Kronecker indices

% F: an (n x n) matrix with NaNs as parameters, where n is the
b McMillan degree = sum of the Kronecker indices

% H: an (s x n) matrix with NaNs as parameters

b K: an (n x s) matrix with NaNs as parameters

yA B: an (n x m) matrix with NaNs as parameters

% D: an (s x m) matrix with NaNs as parameters

yA residv: an (nobs x s) matrix containing the residuals obtained in
pA the first stage

% sigmarv: an (s x s) covariance matrix of residv

74

http:tsig=[.75

h
o
h
o
h
h
h
h
h
h
h
o
h
o
h

h

h

h

T

vgam:

bind:
beta:

tv:
vgams:

vgamtv:
noninv2:
nonst2:
resid2:

sigmar?2:
musers:

phis:
phitv:
thetas:
thetatv:
gammas :
gammatv:
mu:
mutv:
phist:
thetast:

gammast:

a {[(2*nlag + 1)*s~2 + (nlag + 1)*s*m + neqs] x 1} vector
containing the stacks of phi (except the first matrix),
theta, gamma, and s NaNs to account for the mean, where
nlag = max(kro).
an [(nparm + s) x 1] index vector for the parameters in
vgam.
an [(nparm + s) x 1] vector containing the parameters
estimated in the second stage
an [(nparm + s) x 1] vector containing the t-values of beta
a vector like vgam but with the NaNs replaced with the
parameters estimated in the second stage.
a vector like vgam but with the NaNs replaced with the
t-values corresponding to the second stage.
= 1, if model is noninvertible after the second stage

0, if model is invertible after the second stage
= 1, if model is nonstationary after the second stage

0, if model is stationary after the second stage
an [(nobs-nlag) x s] matrix containing the residuals of the
second stage regression
covariance matrix of resid2
mean corresponding to the constant estimated in the second
stage
same as phi but with the NaNs replaced with the parameters
estimated in the second stage
same as phi but with the Nans replaced with the t-values
corresponding to the second stage
same as theta but with the NaNs replaced with the
parameters estimated in the second stage
same as theta but with the Nans replaced with the t-values
corresponding to the second stage
same as gamma but with the NaNs replaced with the
parameters estimated in the second stage
same as gamma but with the Nans replaced with the t-values
corresponding to the second stage
an (s x 1) vector containing the constant estimated in the
second stage.
an (s x 1) vector containing the t-values of the constant
estimated in the second stage.
same as phis but with coefficient matrices premultiplied by
phis(:,:,1)"{-1} (VARMAX model not in echelon form)
same as thetas but with coefficient matrices premultiplied
by phis(:,:,1)"{-1} (VARMAX model not in echelon form)
same as gammas but with coefficient matrices premultiplied

75

h
h
h
h
h
h
h
h
h
b
h
h
o
h
h
h
h
h
h
h
b
h
h
h

h

T

h

h
h
h
h

Fs:

Hs:

Ks:

Bs:

Ds:
noninv3:
nonst3:
resid23:
sigmar23:
beta3:
tv3:
vgams3:
vgamtv3:
mus3:
phis3:
thetas3:
gammas3:
phitv3:
thetatv3:
gammatv3:

mutv3:

by phis(:,:,1)"{-1} (VARMAX model not in echelon form)
same as F but with the NaNs replaced with the parameters
estimated in the second stage

same as H but with the NaNs replaced with the parameters
estimated in the second stage

same as K but with the NaNs replaced with the parameters
estimated in the second stage

same as B but with the NaNs replaced with the parameters
estimated in the second stage

same as D but with the NaNs replaced with the parameters
estimated in the second stage

= 1, if model is noninvertible after the third stage

0, if model is invertible after the third stage

= 1, if model is nonstationary after the third stage

= 0, if model is stationary after the third stage

an (nobs x s) matrix of residuals obtained before the third
stage using the VARMAX difference equation estimated in the
second stage starting with zeros.

covariance matrix of resid23

same as beta but containing the parameters

estimated in the third stage

same as tv but containing the t-values corresponding to the
third stage

same as vgams but with the parameters estimated in the
third stage

same as vgamtv but with the t-values corresponding to the
third stage

same as mu but with the constant estimated in the third
stage

same as phis but containing the parameters estimated in the
third stage

same as thetas but containing the parameters estimated in
the third stage

same as gammas but containing the parameters estimated in
the third stage

same as phitv but containing the t-values corresponding to
the third stage

same as thetatv but containing the t-values corresponding
to the third stage

same as gammatv but containing the t-values corresponding
to the third stage

same as mutv but containing the t-values corresponding to
the third stage

76

T

80

phist3:
thetast3:
gammast3:
Fs3:

Ks3:

Bs3:

Ds3:

Hs3:
resid3:

sigmar3:
resid3m:

sigmar3m:

Same
Same
Same
sSame

as
as
as
as

phist but containing the parameters estimated in %

thetast but containing the parameters estimated in %
gammast but containing the parameters estimated in %

Fs but containing the parameters estimated in the

third stage
same as Ks but
third stage
same as Bs but
third stage
same as Ds but
third stage
same as Hs but
third stage

an [(nobs-nlag) x s] matrix of residuals
covariance matrix of resid3
an (nobs x s) matrix containing the residuals obtained
using the VARMAX difference equation estimated in the
third stage starting with zeros.
covariance matrix of resid3m

containing the
containing the
containing the

containing the

parameters

parameters

parameters

parameters

estvarmaxpqrPQR

estimated in the
estimated in the
estimated in the
estimated in the

corresponding to %

function [str,ferror] = estvarmaxpqrPQR(y,x,seas,ordersr,orderss,hr3,...
finv2,mstainv,nsig,tsig)
% PURPOSE: estimates a seasonal VARMAX model using the Hannan-Rissanen
method (function MHANRIS). It returns a structure containing
the estimated model. The estimated model is forced to be

stationary and invertible.
After having estimated a VARMAX model with ESTVARMAXPQRPQR,
the user can impose some zero restrictions in the model and
r-eestimate using the MHANRIS function.

h
h
b
h
h
o
h
h
h
h
h
b
h
h
h
h

USAGE: [str,ferror] = ...
estvarmaxpqrPQR(y,x,seas,ordersr,orderss,hr3,finv2,mstainv,

where: y
X

seas
orde

rsr

nsig,tsig)

an (nobs x negs) matrix of y-vectors
matrix of input variables (nobs x nx)
(NOTE: constant vector automatically included)
= seasonality
a (1 x 3) array containing the regular VARMAX

orders

77

the tli
the
the

the -

yA orderss = a (1 x 3) array containing the seasonal VARMAX

b orders

b hr3 = 1, perform only the first two stages of the HR

b method

b 0, perform the three stages of the HR method, but
yA only if the second stage model is invertible.

% finv2 = 1, make model invertible after second stage of HR
yA 0, leave model as it is after second stage of HR
yA mstainv = 1, use the DARE for enforcing stationarity or

yA invertibility. This can only be used when there

b are no restrictions in the model.

yA = 0, use multiplication by a small number.

pA nsig = a (1 x 2) array. If nsig(i)=1, eliminate

b nonsignificant parameters after the i-th stage of
% the HR method, i=1,2. Default nsig=[0 0];

b tsig = a (1 x 2) array. If the t-value is less than

yA tsig(i), the parameter is eliminated after the

b i-th stage of the HR method and the model is

yA r-eestimated, i=1,2.

/A Default tsig=[.75 1.].

% If the three stages of the Hannan-Rissanen method are performed,
% residuals based on the difference equation are also obtained using the
% third stage estimates

S —
% RETURNS: str = a structure containing the estimated parameters with
pA the following fields (see function MHANRIS)

/A s: number of outputs (negs)

yA m: number of inputs (nx)

pA kro: a (1 x s) vector containing the Kronecker indices

yA phi: an (s x s x maxkro) array with NaNs as parameters

yA theta: an (s x s x maxkro) array with NaNs as parameters

yA gamma: an (s x m x maxkro) array with NaNs as parameters

% nparm: number of parameters

yA npar: an (s x s) array to define the Kronecker indices

% F: an (n x n) matrix with NaNs as parameters, where n is the
b McMillan degree = sum of the Kronecker indices

% H: an (s x n) matrix with NaNs as parameters

b K: an (n x s) matrix with NaNs as parameters

yA B: an (n x m) matrix with NaNs as parameters

% D: an (s x m) matrix with NaNs as parameters

yA residv: an (nobs x s) matrix containing the residuals obtained in
pA the first stage

% sigmarv: an (s x s) covariance matrix of residv

78

http:tsig=[.75

h
o
h
o
h
h
h
h
h
h
h
o
h
o
h

h

h

h

T

vgam:

bind:
beta:

tv:
vgams:

vgamtv:
noninv2:
nonst2:
resid2:

sigmar?2:
musers:

phis:
phitv:
thetas:
thetatv:
gammas :
gammatv:
mu:
mutv:
phist:
thetast:

gammast:

a {[(2*nlag + 1)*s~2 + (nlag + 1)*s*m + neqs] x 1} vector
containing the stacks of phi (except the first matrix),
theta, gamma, and s NaNs to account for the mean, where
nlag = max(kro).
an [(nparm + s) x 1] index vector for the parameters in
vgam.
an [(nparm + s) x 1] vector containing the parameters
estimated in the second stage
an [(nparm + s) x 1] vector containing the t-values of beta
a vector like vgam but with the NaNs replaced with the
parameters estimated in the second stage.
a vector like vgam but with the NaNs replaced with the
t-values corresponding to the second stage.
= 1, if model is noninvertible after the second stage

0, if model is invertible after the second stage
= 1, if model is nonstationary after the second stage

0, if model is stationary after the second stage
an [(nobs-nlag) x s] matrix containing the residuals of the
second stage regression
covariance matrix of resid2
mean corresponding to the constant estimated in the second
stage
same as phi but with the NaNs replaced with the parameters
estimated in the second stage
same as phi but with the Nans replaced with the t-values
corresponding to the second stage
same as theta but with the NaNs replaced with the
parameters estimated in the second stage
same as theta but with the Nans replaced with the t-values
corresponding to the second stage
same as gamma but with the NaNs replaced with the
parameters estimated in the second stage
same as gamma but with the Nans replaced with the t-values
corresponding to the second stage
an (s x 1) vector containing the constant estimated in the
second stage.
an (s x 1) vector containing the t-values of the constant
estimated in the second stage.
same as phis but with coefficient matrices premultiplied by
phis(:,:,1)"{-1} (VARMAX model not in echelon form)
same as thetas but with coefficient matrices premultiplied
by phis(:,:,1)"{-1} (VARMAX model not in echelon form)
same as gammas but with coefficient matrices premultiplied

79

h
h
h
h
h
h
h
h
h
h
h
h
h
h
o
h
b
h
h
h
h
h
h
h
h
o
h
h

h
b
h

h
o
h
h
h
h
h
h
h
b

Fs:

Hs:

Ks:

Bs:

Ds:
noninv3:
nonst3:
resid23:
sigmar23:
beta3:
tv3:

vgams3:
vgamtv3:

mus3:
phis3:

thetas3:
gammas3:
phitv3:
thetatv3:
gammatv3:

mutv3:
phist3:
thetast3:
gammast3:
Fs3:

Ks3:

by phis(:,:,1)"{-1} (VARMAX model not in echelon form)

same as F but with the NaNs replaced with the parameters
estimated in the second stage

same as H but with the NaNs replaced with the parameters
estimated in the second stage

same as K but with the NaNs replaced with the parameters
estimated in the second stage

same as B but with the NaNs replaced with the parameters
estimated in the second stage

same as D but with the NaNs replaced with the parameters
estimated in the second stage

= 1, if model is noninvertible after the third stage

0, if model is invertible after the third stage

= 1, if model is nonstationary after the third stage

= 0, if model is stationary after the third stage

an (nobs x s) matrix of residuals obtained before the third
stage using the VARMAX difference equation estimated in the
second stage starting with zeros.

covariance matrix of resid23

same as beta but containing the parameters

estimated in the third stage

same as tv but containing the t-values corresponding to the
third stage

same as vgams but with the parameters estimated in the %
same as vgamtv but with the t-values corresponding to the
third stage

same as mu but with the constant estimated in the third
stage

same as phis but containing the parameters estimated in the
third stage

same as thetas but containing the parameters estimated in %
same as gammas but containing the parameters estimated in %
same as phitv but containing the t-values corresponding to %
same as thetatv but containing the t-values corresponding %
same as gammatv but containing the t-values corresponding
to the third stage

same as mutv but containing the t-values corresponding to %

same as phist but containing the parameters estimated in %
same as thetast but containing the parameters estimated in %
same as gammast but containing the parameters estimated in %
same as Fs but containing the parameters estimated in the
third stage

same as Ks but containing the parameters estimated in the

80

third s

the

the
the

the

the
the tl
the
the

h
h
h
o
h
b
b
h
h
b
h
h
2
h

81

third stage

Bs3: same as Bs but containing the parameters estimated in the
third stage

Ds3: same as Ds but containing the parameters estimated in the
third stage

Hs3: same as Hs but containing the parameters estimated in the
third stage

resid3: an [(nobs-nlag) x s] matrix of residuals corresponding to %
sigmar3: covariance matrix of resid3
resid3m: an (nobs x s) matrix containing the residuals obtained

using the VARMAX difference equation estimated in the
third stage starting with zeros.

sigmar3m: covariance matrix of resid3m

eurpi

function [nr,ferror]=eurpi(Pi,hml)

h
b
h
b
h
h
h
b
o
h

82

This function estimates the number of unit roots in Pi

Input

arguments:
Pi : an m x m matrix
hml: a number with which the absolute value of the roots is
compared

Output arguments:

nr: an integer, the number of unit roots

evarmallrurimp

function [Pi,alpha,betap,betaor,ferror] = evarmallrurimp(y,x,a,ir,nord)
% PURPOSE: performs VARMAX(1,1) estimation with rank imposed

h
o
h
h
b
h
h
h
h

USAGE:
where:

and returns estimated Pi matrix in the form Pi=alpha*betap,

where Pi = -phi(1) in the error correction form.
[beta,res] = evarmallriiRu(yd,a,seas,y,x)
y = an (nobs x neqs) matrix of observations
X = matrix of input variables (nobs x nx)
a = an (nobs x neqs) matrix of residuals
ir = 0,1, corresponding to I(0) or I(1l) case
nord = rank of Pi

81

the -

b (NOTE: constant vector automatically included)

% ___

% RETURNS: Pi = an (nobs x nobs) matrix, equal to -phi(1), and such
% that Pi = alphaxbetap

b alpha = an (nobs x nord) matrix

yA betap = an (nord x nobs) matrix

b betaor = an (nobs x nord) matrix orthogonal to betap

yA ferror = a flag for errors
R —

83 exactmedfv

function [ff,beta,e,f,str,hb,Mb]=exactmedfv(beta,y,x,str,tol,Y,chb)

% PURPOSE: given a structure, it computes the functions in ff such that
% the expression ff’*ff is minimized in the Levenberg-Marquardt method.
% It uses the fast square root version of the Kalman filter.

% USAGE: [ff,beta,e,f,str,hb,Mb]=exactmedfv(beta,y,x,str,tol,Y,chb)

% where: beta = the parameter vector

yA y = an (nobs x neqgs) matrix of y-vectors

pA X = matrix of input variables (nobs x nx)

yA str = a structure containing the model information

b tol = tolerance for not updating in the square CKMS rec.
% Y = an (nobs x (neqs x nbeta)) regression matrix

% chb =1 compute hb and Mb

b 0 do not compute hb and Mb

e

% RETURNS: ff = a vector containing the individual functions at the
pA solution

b beta = the parameter vector, possibly modified

yA e = a vector containing the standardized residuals

yA f = a scalar containing the determinantal term

yA str = the input structure str, possibly modified

yA hb = the beta estimator

yA Mb = the Mse of the beta estimator
o

84 exactmedfvc
function [ff,beta,e,f,str,stx,recrs]=exactmedfvc(beta,y,x,str,Y,chb)

% PURPOSE: given a structure, it computes the functions in ff such that
% the expression ff’*ff is minimized with the Levenberg-Marquardt

82

% method. The state space echelon form is:
h

% alpha_{t+1}
% y_{t}

h
R

% USAGE: [ff,beta,e,f,str,stx,recrs]=exactmedfvc(beta,y,x,str,Y,chb)

Fxalpha_{t} + B*x_t{t} + Kxa_{t}
Y_{t}xbeta + H*alpha_{t} + D*x_{t} + a_{t}

% where: beta = the parameter vector

yA v = an (nobs x neqs) matrix of y-vectors

yA X = matrix of input variables (nobs x nx)

pA str = a structure containing the model information

% Y = an (nobs x (neqs x nbeta)) regression matrix

% (neqgs x nbeta) if it is time invariant

b chb = 1 compute hb and Mb in Kalman filter

pA 0 do not compute hb and Mb in Kalman filter

b 2 compute recursive residuals updating regression
yA p-

b 3 compute recursive residuals with fixed

yA regression p.
o

% RETURNS: ff = a vector containing the individual functions at the
b solution

yA beta = the parameter vector, possibly modified

b e = a vector containing the standardized residuals

b f = a scalar containing the determinantal term

% str = the input structure str, possibly modified

b stx = a structure containing the following fields

% .X,.2,.G,.W,.T,.H,.ins,.i are the matrices and initial

b conditions information corresponding to the state space model
yA for the endogenous part

yA .hb = the beta estimator

pA .Mb = the Mse of the beta estimator

pA A = the estimated augmented state vector at the end of
yA filtering

pA P = the Mse of A at the end of filtering

% .B,.D, .mi = the initial state estimate and the matrices B and D
% for the state space model corresponding to the

b exogenous part

yA .kro = the kronecker indices for the undecoupled model

A recrs = standardized recursive residuals

% ___

83

85

exactmedfved

function [ff,xv,e,f,str,stx,recrs]= ...
exactmedfvcd(xv,y,xf,str,Y,chb,constant)

% PURPOSE: given a structure, it computes the functions in ff such that
% the expression ff’*ff is minimized with the Levenberg-Marquardt

% method. The state space echelon form is:

h
h
h
o
h
h
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
h
o
h
o
h
h
h
h
h
h
h
h

alpha_{t+1}
y_{t}

Fxalpha_{t} + K*a_{t}
Y_{t}*beta + H*alpha_{t} + a_{t}

USAGE: [ff,xv,e,f,str,stx,recrs]=exactmedfvc(xv,y,x,str,Y,chb)

where: XV

y
str

Y

chb

= the parameter vector
= an (nobs x neqs) matrix of y-vectors
= a structure containing the model information
= an (nobs x (neqs x nbeta)) regression matrix other
than the mean
(negs x nbeta) if it is time invariant
= 1 compute hb and Mb in Kalman filter
0 do not compute hb and Mb in Kalman filter
2 compute recursive residuals updating regression
p-
3 compute recursive residuals with fixed
regression p.
a constant should be included in the model for the
differenced series
no constant in the model for the differenced series

RETURNS: ff

str
stx

= a vector containing the individual functions at the
solution

the parameter vector, possibly modified

a vector containing the standardized residuals

a scalar containing the determinantal term

the input structure str, possibly modified

a structure containing the following fields

.X,.2,.G,.W,.T,.H,.ins, .1 are the matrices and initial
conditions information corresponding to the state space model

for the
.hb
.Mb
.A

endogenous part

the beta estimator

the Mse of the beta estimator

the estimated augmented state vector at the end of
filtering

84

yA P = the Mse of A at the end of filtering
A .kro = the kronecker indices for the model
% recrs = standardized recursive residuals

% ___

86 fasttf

function [f,xv,e,g,M,yd1l] = fasttf(xv,y,Y,parm,infm,xf)
b
yA

b this function computes model residuals using the fast Morf, Sihdu
pA and Kailath algorithm

h

h

b INPUTS:

yA Xv: an array containing model parameters

yA y: an array containing the input series

yA Y: a matrix containing regression variables

pA parm: a structure containing model information, where
yA .s: seasonality

b .S: second seasonality

b .p: AR order

pA .ps: order of the AR of order s

b .q: order of the regular MA

yA .gs: order of the MA of order s (1 at most)

% .qS: order of the MA of order S (1 at most)

yA .dr: order of regular differencing

pA .ds: order of differencing of order s

yA .dS: order of differencing of order S

pA .pvar: array containing the indices of variable parameters
yA .pfix: array containing the indices of fixed parameters

% .ninput: number of inputs
% .inputv: array containing the input variables
% .delay: array with the delays of the input filters

b .ma: array with the ma parameters of the input filters

yA .ar: array with the ar parameters of the input filters

pA .npr: number of forecasts

yA infm: a structure containing information on the estimation method,
b where

% .mvx: =1, exact max. likelihood; =0, unconditional mean squares

% .chb: = 1 compute the beta estimate and its MSE

yA 0 do not compute the beta estimate and its MSE

85

h
h
h
h
h
h
h

87

.inc: = 0, the initial states in the filter equations to obtain the

filtered variables are equal to zero (not estimated)
= 1, the initial states in the filter equations are estimated
xf: an array containing fixed parameter values

OUTPUTS:
f: residual vector, whose sum of squares will be minimized

fdhess

function H = fdhess(f,x,varargin)
% PURPOSE: Computes finite difference Hessian

% _—

% Usage: H = fdhess(func,x,varargin)
% Where: func = function name, fval = func(x,varargin)

o
h

% _

X = vector of parameters (n x 1)

varargin = optional arguments passed to the function

% RETURNS:

T

% —_—

% Code from:

% COMPECON toolbox [www4.ncsu.edu/ pfackler]

% documentation modified to fit the format of the Ecoometrics Toolbox
% by James P. LeSage, Dept of Economics

% University of Toledo

% 2801 W. Bancroft St,

% Toledo, OH 43606

% jlesage@spatial-econometrics.com

88

fdis_cdf

function cdf = fdis_cdf(x,a,b)
% PURPOSE: returns cdf at x of the F(a,b) distribution

% USAGE: cdf = fdis_cdf(x,a,b)
% where: x = a vector

o
h

a = numerator dof
b = denominator dof

% RETURNS:

86

mailto:jlesage@spatial-econometrics.com

% a vector of cdf at each element of x of the F(a,b) distribution

Y
% SEE ALSO: fdis_d, fdis_inv, fdis_rnd, fdis_pdf, fdis_prb

89 fdjac2

function [fjac,g]l = fdjac2(info,x,ff,varargin)

h

% This function computes a finite-difference jacobian

h

% Input arguments:

yA info structure containing function names and optimization options

pA B S a function to evaluate the vector ff of individual functions
b such that ff’*ff is minimized

% .tr >0 a transformation of the parameters corresponding to tr

b variables is performed

pA =0 no transformation of parameters is performed

% .tol: a parameter used for stopping

yA .jac: =1 evaluation of jacobian at gradient at the solution is

b performed

yA =0 no evaluation of jacobian at gradient at the solution is
b performed

pA .max: maximum number of iterations

% .nu0: initial value of the nu parameter

/A .prt: =1 printing of results

yA =0 no printing of results

% ff: the vector of functions evaluated at x

h ox: a vector containing the initial parameter values

% varargin: arguments to be passed to function f
T

% Output arguments:

% fjac a matrix containing the jacobian

hg a vector containing the (1/2)gradient

90 findurpir

function [nr,ferror]=findurpir(Pi,Th,hml,can)

b

b

% This function checks whether there are unit roots in Pi

h

87

% Input arguments:

% Pi: an m x m matrix

pA Th: an m x m matrix

% hml: a number with which the absolute value of the
b roots is compared

% can: a small number to handle cancellation

% Output: nr= an integer, number of unit roots

yA ferror= a flag for errors

91 fipa

function r=fipa(fi)

h

% this function transforms the parameters of an autoregressive

% model 1+phi_1x*z+...+phi_p*z”"p into its partial autocorrelation
% coefficients

% input : fi, a 1 x p vector

% output: r, a 1 x p vector

92 fixvarmapqPQ

function [str,ferror] = fixvarmapqPQ(str)

% PURPOSE: given a structure containing information about a VARMA

% model, it fixes the parameters in phi, Phi, th, Th and Lh that

% correspond to those elements in phin, Phin, thn, Thn and Lhn that are
% not equal to NaN.

% ___

% USAGE: str = fixvarmaxpqPQ(str)

% where: str = a structure created with function suvarmapqgPQ
% ___

% RETURNS: str = a structure containing model information

% ___

93 fixvarmapqPQe

function [str,ferror] = fixvarmapqPQe(str)

% PURPOSE: given a structure containing information about a VARMA

% model, it fixes the parameters in phi, Phi, th, Th and Lh that

% correspond to those elements in phin, Phin, thn, Thn and Lhn that are
% not equal to Nal.
.

% USAGE: str = fixvarmaxpqPQe(str)
% where: str = a structure created with function suvarmapqPQ

% ___

% RETURNS: str = a structure containing model information

% ___

94 fstlkhev

function [f,e,g,M]=fstlkhev(y,Y,Z,T,H,Sigma,chb)
pA

b this function computes the residuals using the CKMS recursions
pA corresponing to an ARIMA model, possibly with regression variables.
b The series is assumed to be stationary. The state space model is

b

b x_{t} = T x_{t-1} + H a_{t}
yA y_{t} =Y \beta + Z x_{t},
pA

yA where Var(x_{1}) = Sigma.

pA

/A INPUTS:

yA y: an array containing the input series

b Y: a matrix containing regression variables

pA Z: the Z matrix

b T: the T matrix

pA H: the H matrix

/A Sigma: the Sigma matrix

yA chb: = 1, compute regression estimates, = 0, do not compute reg.
b estimates.

h

b OUTPUTS:

yA f: residual vector, whose sum of squares will be minimized
% e: residual vector for inference

b g: array containing the regression estimates

pA M: matrix containing the mse of the regression estimates

95 gacf

function [gammcf,gln] = gacf(A,X)
h

% auxiliary function called in function gammp (gamma density function)

89

96 gammlin

function g=gammln(x)

b
h

auxiliary function called in functions gacf and gser

97 gammp

function y=gammp(A,X)

o
b

computes the probability density function of the gamma distribution

98 genfixseaspat

function Y = genfixseaspat(modescr,n)

o
h
o
h
h
h
b
h
b
o
h
h
b
h
h
h
h
b
h
b
h

sk ok sk ok ok ok ok sk ok sk ok ok ok ok sk sk s o ok ok o o ok ok ok sk ok ok sk ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok sk ok sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok
This function creates regression variables corresponding to fixed
seasonal patterns of the form

s_t = axcos(wxt) + bkxsin(wxt),
where w=2*pixk/n

INPUTS:
modescr : structure with the following fields:

.seas : number of seasonal patterns

.seasp : cell array containing the pairs [per_j,m_jl
for the seasonal patterns, where per_j is the
period and m_j is the number of harmonics in the
j—th seasonal pattern

n : desired length for the regression variables

OUTPUTS:
Y : matrix with regression variables

99 genleap

function Y = genleap(Iy,Im,N,Mq)

90

% this function generates the leap year variable. It works until 2100.
o
% this function generates the leap year variable. It works until 2100.

b

% input variables Iy : the initial year

yA Im : the initial period

% N : the length of the desired vector

yA Mq : the series frequency (=12 for monthly,
v =4 for

yA quarterly)

2

% output variables Y : N x 1 vector containing the leap year
pA variable

100 gensersm

function B = (phi,alpha,th,stda,ctr,Ns,N,1,seed)

b

% This function obtains Ns simulated series of length N that follow the
% model defined by phi, alpha, th, stda and ctr.

h

% input arguments:

% phi: AR polynomial

% alpha: nonstationary polynomial (differencing operator)

% th: MA polynomial

% stda: standard deviation of the innovations in percentage of the

% levels.

h ctr:
yA 1 include a constant in the model

b 2 include a constant plus a time trend in the model

% Ns: number of simulations

% N: series length

% 1: number of initial observations discarded in the simulated series
h

% output arguments:

% B: an Ns_N x 1 vector containing the stacked simulated series

0 include neither a constant nor a time trend in the model

101 genycor
function ycor=genycor(y,Y,ny,g)

T

% this function computes the series corrected by regression effects in a

91

h
b

o
h

regression model of the form
y = Yxg +e,

where ny is the series length.

102 ggbpsinbut

function ggbpsinbut(D,ompl,omp2,oms2,d,alph,lambda)

h
b
h
h
h
h
o
h
h
h
h
h
b
o
h
h
h
o
h
h

This function plots the squared gain function corresponding to a
band-pass filter based on the sine Butterworth filter.
Input parameters:

D : a (1 x 2) array containing the design tolerances D1 and
D2. It can be empty.
ompp1l : a number, design frequency Omegapl divided by pi. It
can be empty
omp2 : a number, design frequency Omegap2 divided by pi. It
can be empty
oms2 : a number, design frequency Omegas2 divided by pi. It
can be empty
d : a number, the exponent in Alpha(z) and num(z). Required
alph : alph parameter in 1 - 2*xalph*z + z"2. Required
lambda : a number, the square root of the signal to noise ratio
(sigma”2_n/sigma”2_b) in the But. tangent filter.
Required

Note: The parameters d, alph and lambda define the filter. If D, ompl,
omp2 and oms2 are entered by the user, the program will draw the
toleration lines.

103 ggbptanbut

function ggbptanbut(D,ompl,omp2,oms2,d,alph,lambda)

b
2
h
h
b
o
h
h
h

This function plots the gain function corresponding to a
band-pass filter based on the tangent Butterworth filter.
Input parameters:

D : a (1 x 2) array containing the design tolerances D1 and
D2. It can be empty.

ompp1l : a number, design frequency Omegapl divided by pi. It
can be empty

omp2 : a number, design frequency Omegap2 divided by pi. It

92

yA can be empty

yA oms2 : a number, design frequency Omegas2 divided by pi. It

b can be empty

% d : a number, the exponent in Alpha(z) and num(z). Required
b alph : alph parameter in 1 - 2*alph*z + z"2. Required

yA lambda : a number, the square root of the signal to noise ratio
/A (sigma~2_n/sigma”2_b) in the But. tangent filter.

pA Required

% Note: The parameters d, alph and lambda define the filter. If D, ompl,
yA omp2 and oms2 are entered by the user, the program will draw the
b toleration lines.

104 ggsintanbut

function ggsintanbut(D,Thetap,Thetas,d,thc)

h

% This function plots the gain function corresponding to a sine or
% tangent Butterworth filter.

% Input parameters:

yA D : a (1 x 2) array containing the design tolerances D1 and
pA D2. It can be empty.

yA Thetap : a number, design frequency Thetap divided by pi. It can
/A be empty

yA Thetas : a number, design frequency Thetas divided by pi. It can
b be empty

b d : a number, the exponent in Alpha(z) and num(z). Required
% thce : a number, the frequency for gain .5, divided by pi.

b Required

% Note: The parameters d, and thc define the filter. If D, Thetap and

b Thetas are entered by the user, the program will draw the

yA toleration lines.

105 glags

function X=glags(x,lags)

h

% this function generates a matrix containing lags of x
2

% Input arguments:

% x: an (n) x (1) vector series

% lags: the number of lags to be generated

t

93

h
h
h

Output argument:
X: an (n-lags) x (lags) matrix containing the lagged variables
Note that lags observations are lost

106 gled

function [G,U,Dr,Nr,ierrglcd] = glcd(D,N,ivarmax)

h
h
h
h
o
h
h
h
h
h

This function computes the Greatest Common Left Divisor G of a pair
of polynomial matrices D and N of dimensions (n,n) and (n,m)
respectively

U is a unimodular matrix such that [D N] U = [G 0] and G is lower
triangular

Moreover U = V1 -Nr and if (D, N) was a left matrix fraction
description of the Ul Dr transfer function H then (Dr, Nr) is a
right coprime matrix fraction description of H. If we compute inv(U),
then inv(U) = D1 N1 and (N1, D1) is a left coprime matrix fraction
description of H -Ur Vr

107 gser

function [gamser,gln]=gser(A,X)

h
h

auxiliary function called in function gammp

108 hanris

function [x,laphi,x2]=hanris(yc,s,S,p,ps,q,q9s,qS,o0ls,a)

o
h
h
h
b
h
b
h
h
h
h
o
h
h

this function applies the Hannan-Rissanen method to obtain
ARMA estimates

Input arguments:

yd : a vector containing the series

s : seasonality

S : second seasonality

P : degree of AR polynomial

ps : degree of AR seasonal polynomial

q : degree of MA polynomial

gs : degree of MA seasonal polynomial

gsS : degree of MA second seasonal polynomial

ols : =1, perform OLS, = 0, use the Durbin Levinson algorithm

94

h
h
h
o
h
h
h
h
h

a : an integer, the degree of the AR approximation in the first
step of the Hanna-Rissanen method.

Output arguments:

X : second or third step estimates (if process has an MA part
and the second step model is invertible)

laphi : a vector containing the estimates of the AR approximation in
first step of the Hanna-Rissanen method

x2 : second step estimates

109 hist2

function [bin,cutpnt,otlrtO,otlr] = hist2(Y,med)

o
h
o
h
b
h
h
h
h
h
h
h
b
h

med d Local median of the y’s
bin i Local vector of counts of observations between cut points
i.e. bins

cutpnt d Local vector of cut points where observations counted in
bin(i) are cutpnt(i-1) < y <= cutpnt(i)
nobs-nefobs

otlr i Local notlr long list of the values of residuals
greater than 3.25

otlrt0 i Local notlr long list of residuals greater than 3.25
standard deviations from the median

O o0 o o0 o o0 o o0 o o0

110 housref

f
b
h
b
o
h
b
h
o
h
h
h

unction [Q,R,Indx,ierror] = housref(4,Q)

USAGE: [Q,R,Indx,ierror] housref (A,Q)
where: A = an n x m matrix
Q = an n x n identity matrix
Matrix A is reduced to row echelon form by means of Housholder

transformations

RETURNS:
R = the upper triangular matrix in row echelon form such
that A=Qx[R;0]

95

% Q = a unitary matrix such that Q’*A = [R;0]

yA Indx = an index containing the 1.i. and the 1.d. columns in R
% Indx(i)=0, i-th column is 1.i.

% =1, i-th column is 1.d.

% ierror =1, dimension mismatch in A and Q

yA =2, (is not the identity matrix on input

/A =0, there are no errors on input

R ———————.
% If matrix Q is given on input, then the orthogonal Q matrix such that
% Q’*A = [R;0] is computed and given on output. If not, Q=[] on output.

111 ical

function obs = ical(year,period,cstructure)

% PURPOSE: finds observation # associated with a year,period
pA given a cal() structure

Y

% USAGE: obs = ical(year,period,c_str)

% where: year = year (4-digit)
yA period = period (<= frequency)
pA c_str = a structure returned by cal() function

Y
% RETURNS: obs = # of observation associated with year,period

cal(1982,1,12)

% e.g., cstr

% obs = ical(1986,1,cstr) would return 48
% e.g., cstr = cal(1982,1,12)
% obs = ical(1982,1,cstr) would return 1

% __

% SEE ALSO: cal() a function to set up a time-series calendar

b that associates observation #’s with dates
yA tsdate() that returns a string for the date associated
b with observation #

% written by:

% James P. LeSage, Dept of Economics
% University of Toledo

% 2801 W. Bancroft St,

% Toledo, OH 43606

% jpl@jpl.econ.utoledo.edu

112 imparm

function [s,S,dr,ds,dS,p,ps,q,9s,9S,ny,nreg,pfix,pvar] = imparm(parm)

96

mailto:jpl@jpl.econ.utoledo.edu

T

% this function obtains the paramters in structure parm

113 incossm

function [ins,i,ferror,P,V,XX]=incossm(T,H,ndelta)
b
pA

yA This function obtains the initial conditions corresponding to
b the model

h

% y_t = X«beta + Z*alpha_t + G¥epsilon_t

/A alpha_{t+1}= Wxbeta + T*alpha_t + H¥epsilon_t

h

b where epsilon_t is (0,sigma”2I),

h

pA with initial state

h

% alpha_1= c + W_Ox*beta + a_1 + A_lxdelta

h

% where c¢ is (0,0Omega) and delta is (0,kI) (diffuse). It is

% assumed that W_O=[] and, therefore, cwO below is zero.

o

b Input parameters:

yA T : an (nalpha x nalpha) matrix

% H : an (nalpha x nepsilon) matrix

yA ndelta : a positive integer, the number of diffuse components in
pA alpha_t (= number of eigenvalues of unit module in T)
h

b Output parameters:

yA ins: an nalpha x (cc+cwO+cal+ccal) matrix containing the

pA initial state information, according to array i below
b i :a 1 x 4 array containing 4 integers, i=[cc cw0 cal
% ccall, where

b cc = nalpha if ¢ is not missing (0 if ¢ missing)

yA cw0 = number of columns in W_O (0 if W_O missing)

/A cal =1 if a_1 is not missing (0 if a_1 missing)

yA ccal = number of columns in A_1 (0 if A_1 missing)

yA ferror : flag for errors

yA P : first output matrix of SortSchur function

% v : solution of the Lyapunov equation corresponding to the
yA stationary part, V = Fs*VxFs’ + HsxHs’

97

h
b

XX : solution of the continuous time Lyapunov equation
Fn*xXX - XX*Fs = A

114 incovma

function [A,Sigma,Xi]=incovma(phi,alpha,th)

h
h
h
h
h
h
h
h
h
h
h
h
b
b

This function computes the initial covariance matrix, Sigma,
and the A matrix for the initial conditions of the Kalman filter.
The initial state vector is

x_{d+1} = Ax\delta + \Xixc,

where Var(c) = Sigma. See Gomez and Maravall (1994), "Estimation,
Prediction and Interpolation for Nonstationary Series with the
Kalman Filter", Journal of the American Statistical Association,
89, 611-624. The filter is initialized at time t = d+1, where d is
the differencing degree, and the first d observations are stacked
to form the \delta vector.

115 inest

function x=inest(yd,beta,s,S,p,ps,q,qs,qS,o0ls,a)

h
h
h
o
h
h
h
b
h
b
h
h
t
h
o
h
h
h

this function computes initial ARMA estimates using
the Hannan-Rissanen method

Input arguments:

yd : an (n x m) matrix containing the series, yd(:,1), and an (n x
m-1) matrix of regression variables if m > 1.

beta : an m-1 vector containing the OLS estimators if m > 1, empty if

m=1
s : seasonality
S : second seasonality
P : degree of AR polynomial
ps : degree of AR seasonal polynomial
q : degree of MA polynomial
gs : degree of MA seasonal polynomial
gsS : degree of MA second seasonal polynomial
ols : =1, perform OLS, = 0, use the Durbin Levinson algorithm in

the HR method

98

% a : an integer, the degree of the AR approximation in the first

b step of the Hanna-Rissanen method.

h

% Output arguments:

h x : a vector containing the ARMA parameter estimates

116 infcr

% PURPOSE: to determine optimal lag length using information criteria

e
% USAGE: lagsopt = infcr(y,maxlag,minlag,crt,prt,x)

% where: y = an (nobs x nvar) matrix of y-vectors

b maxlag = the maximum lag length

yA minlag = the minimum lag length

% crt = the information criterion, ’aic’ or ’bic’

% (default = ’aic’)

pA prt = flag for printing

% 0 = no, 1 = yes

b (default = 0)

yA X = optional matrix of variables (nobs x nx)

yA (NOTE: constant vector automatically included)

e
% RETURNS: lagsopt, the optimum number of lags

% ___

117 inv2

function str = inv2(str)

% PURPOSE: given a structure passed after executing the second step of
% HR method such that the model is not invertible, this function

% inverts the model using the DARE.

O
% USAGE: str = inv2(str)

% where: str = a structure containing the structure of the VARMAX

% ___

% RETURNS: str = a structure containing the inverted model

% ___

118 inv2r

function str = inv2r(str)

99

% PURPOSE: given a structure passed after executing the second step of
% HR method such that the model is not invertible, this function

% inverts the model.

e

% USAGE: str = inv2r(str)

% where: str = a structure containing the structure of the VARMAX
e

% RETURNS: str = a structure containing the inverted model

% ___

119 inv3

function str = inv3(str)

% PURPOSE: given a structure passed after executing the third step of

% HR method such that the model is not invertible, this function

% inverts the model using the DARE.
e

% USAGE: str = inv3(str)

% where: str = a structure containing the structure of the VARMAX
o

% RETURNS: str = a structure containing the inverted model

% ___

120 inv3r

function str = inv3r(str)

% PURPOSE: given a structure passed after executing the third step of

% HR method such that the model is not invertible, this function

% inverts the model.

e

% USAGE: str = inv3r(str)

% where: str = a structure containing the structure of the VARMAX
R

% RETURNS: str = a structure containing the inverted model

% ___

121 invmodel

function [str,ierror]=invmodel (str)
% PURPOSE: given a structure with a noninvertible model, it obtains the
% invertible model with the same covariance generating function than

100

h
o
h
o
h
h
h
h
h
h
h

the original model. The model is assumed to be in echelon form. The
invertible model is also in echelon form. However, if there are
additional constraints in the original model, the invertible model
does not impose those constraints. It only imposes the constraints of
the echelon form.

USAGE: str=invmodel(str)

where: str = a structure containing the model information

RETURNS: str = the structure with the invertible model

122 invroots

f
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
h

unction z=invroots(x,p,ps,q,qs,qs)

sk ok ok ok ok ok ok ok ok ok ok sk sk sk sk s s o o o sk sk ok ok ok koo ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk s sk ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
This function enforces that all roots of the polynomials of a
multiplicative ARMA model are outside of the unit circle. This is
achieved by first transforming the coefficients of each polynomial as
if they were AR coefficients into partial correlation coefficients.
Then, if there are parcor coefficients greater than one in absolute
value, these are transformed into parcor coefficients that lie in
(-1,1). Finally, the new parcor coefficients are transformed into AR
coefficients.

INPUTS:

x : coefficients of the polynomials of a multiplicative ARMA
model p, ps, g, gs, gS : integers specifying where the
coefficients of the ARMA model are in x.

More specifically,

p : first p are AR coefficients

ps : starting with the (p+1)th coefficient, the next ps are AR c.
q : starting with the (p+1+ps+1)th coefficient, the next q are
MA c.

gs : starting with the (p+l+ps+1l+g+1)th coefficient,
the next gs are MA c.

gS : starting with the (p+l+ps+l+q+l+gs+1l)th coefficient,
the next gS are MA c.

OUTPUTS:

z : coefficients such that all roots are outside of the unit
circle

101

123 isOctave

yAA
o/0
%% Return: true if the environment is Octave.
YA
o/0

function retval = isOctave

124 jnorm

function jnr = jnorm(x,p,q)

% given an n-column vector x and a signature matrix J=diag(I_p,-I_q),
% this function calculates the J-norm of x, that is, the quantity

% sqrt(x’*Jxx), assuming that x’*J*x > 0.

h

A —

% USAGE: jnr = jnorm(x,p,q)

% where: X = an n-column vector
A pP,q= integers such that J = diag(I_p,-I-q) is a signature
b matrix

O
% RETURNS: the J-norm of x

% ___

125 jprod

function jpr = jprod(x,y,p,q)

% given two n-column vectors, x and y, and a signature matrix

% J=diag(I_p,-I_q), this function calculates the product x’*J*y.
b

S

% USAGE: jpr = jprod(x,y,p,q)

% where: X, y = n-column vectors
yA P,q= integers such that J = diag(I_p,-I-q) is a signature
b matrix

R E—————.
% RETURNS: the J product of x and y

% ___

126 jqrt

function [Q,R] = jqrt(A,p,q)

102

/A
% ___
% USAGE: [Q,R] = jqrt(A,p,q)

% where: A = an n x m matrix with n >=m
b p,q = integers such that J=diag(I_p,-I_q) is a signature
b matrix

% It is assumed that A’*J*A = R’*JxR, where R is an upper triangular
% matrix. Then, there exists a J-unitary matrix Q such that A=Q*[R;0]
% To construct the matrix Q, J-unitary Housholder transformations are
% used

% ___

% RETURNS:

% R = the upper triangular matrix such that A=Qx*[R;0]

b Q = a factored form of a J-unitary matrix such that

yA QJQ’=Q’JQ=J and Q’*A = [R;0]

% If the product Q’*B is desired for some matrix B, call
yA function qtb of this library (QtB=qtb(A,B,p,q)).
e

yA A is an m by n array. on input A contains the matrix for
yA which the qr factorization is to be computed. on output
yA the strict upper trapezoidal part of A contains the strict
% upper trapezoidal part of R, and the lower trapezoidal
yA part of a contains a factored form of Q.

127 kAI

function [C,ierror] = kAI(A)
%

% This function computes the Kronecker product of the matrix A by I

128 kIA

function [C,ierror] = kIA(A)
yA

% This function computes the Kronecker product of the matrix I by A

129 klv

function [C,ierror] = kIv(v)
pA

% This function computes the Kronecker product of the matrix I by the

103

% vector v

130 lagaena

function [nlag,aenames]=lagaena(parm)
b

% function to create names for ARIMA estimation printing

131 lagaenar

function aenames=lagaenar (parm)

h

% this function generates an string array containing the names for the
% roots of all the polynomials of a transfer function model. These

% include the ARMA polynomials and the rational input filters.

132 lbs

function [gstat,pval,df,seal = lbs(ne,p,r,nr)

b

% this function obtains the Q-statistics and their p-values for a
% sequence of integers p

h

% input arguments:

b ne: length of the variable

pA p: a sequence of integers, i.e. p=l:lag
b r: the covariance sequence

b nr: number of parameters

% output arguments:

yA gstat: an array containing the (-statistics
b pval: an array containing the P-values

yA df: an array containing the degrees of freedom
b sea: standard errors

133 leapid

function oparm=leapid(y,Y,infm,parm,ser,ols,a,fid,fmarqdt)
b

% this function identifies the leap year period using BIC

104

134

lkevarmapqPQ

function [F,xv,xf,e,f,g,M,A,P] = lkevarmapqPQ(xv,y,Y,xf,str,chb)
PURPOSE: given a structure containing information about a VARMA
model, it evaluates the likelihood of that model after putting it
into state space form.

h
b
h

o
h
o
h
b
h
h
h
h
o
h
h

135

USAGE: [F,xv,xf,e,

f,g,M,A,P] = lkevarmapqPQ(xv,y,Y,xf,str,chb)

where:

XV = a vector containing the parameters to be estimated
y = an (n x neqs) matrix containing the data

Y = an (n x (neqs x nbeta)) matrix containing

regression matrix
xf = a vector containing the fixed parameters
str = a structure containing the initial model
information
chb =1, compute regression estimate and covariance
matrix
=0, do not compute
RETURNS: F = a vector containing the individual functions at the
solution

XV = a vector containing the estimated parameters
xf = a vector containing the fixed parameters

e = a vector containing the standardized residuals

f = a scalar containing the determinantal term

g = a vector containing the regression estimates

M = a matrix containing the mse of g

A = the estimated augmented state vector

at the end of filtering
p = the mse of A at the end of filtering

lkevarmapqP Qd

function [F,xv,xf,e,f,g,M,A,P] = lkevarmapqPQd(xv,y,Y,xf,str,chb,constant)
PURPOSE: given a structure containing information about a VARMA

model, it evaluates the likelihood of that model after putting it

into state space form.

h
h
h
h
h

USAGE: [F,xv,xf,e,

f,g,M] = lkevarmapqPQd(xv,y,Y,xf,str,chb,constant)

105

% where: y = an (n x neqgs) matrix containing the data

% Y = an (n x (negs x nbeta)) matrix containing

b regression matrix

pA XV = a vector containing the parameters to be estimated
b xf = a vector containing the fixed parameters

% xi = an index vector, if xi(i)=1, the i-th parameter
% is to be estimated, =0, not

yA str = a structure containing the initial model

b information

yA chb =1, compute regression estimate and covariance

b matrix

yA =0, do not compute

pA constant =1 a constant should be included in the model for
A the differenced series

pA 0 no constant in the model for the differenced

A series
.
S

% RETURNS: F = a vector containing the individual functions at the
b solution

yA XV = a vector containing the estimated parameters

pA xf = a vector containing the fixed parameters

yA e = a vector containing the standardized residuals

pA £ = a scalar containing the determinantal term

b g = a vector containing the regression estimates

pA M = a matrix containing the mse of g

% ___

136 lkevarmapqPQe

function [F,xv,xf,e,f,g,M,A,P] = lkevarmapqPQe(xv,y,Y,xf,str,chb,constant)
% PURPOSE: given a structure containing information about a

% cointegrated VARMA model, it evaluates the likelihood of that model

% after putting it into state space form.
A —

% USAGE: [F,xv,xf,e,f,g,M] = lkevarmapqPQe(xv,y,Y,xf,str,chb,constant)

% where: y an (n x neqs) matrix containing the data

yA Y an (n x (negs x nbeta)) matrix containing

b regression matrix

yA XV = a vector containing the parameters to be estimated
pA xf = a vector containing the fixed parameters
% xi = an index vector, if xi(i)=1, the i-th parameter

106

pA is to be estimated, =0, not

b str = a structure containing the initial model

/A information

pA chb =1, compute regression estimate and covariance

A matrix

% =0, do not compute

A constant =1 a constant should be included in the model for
h the differenced series

b 0 no constant in the model for the differenced

h series
.
e ——

% RETURNS: F = a vector containing the individual functions at the
b solution

pA XV = a vector containing the estimated parameters

A xf = a vector containing the fixed parameters

yA e = a vector containing the standardized residuals

/A f = a scalar containing the determinantal term

yA g = a vector containing the regression estimates

b M = a matrix containing the mse of g

% __

137 lkhev

function [f,e,g,M,AA,Sigmal=1khev(y,Y,Z,T,H,A,Sigma,Xi,d)
pA

yA this function computes the residuals and the GLS estimator of a
yA regression model with ARIMA errors using the two-stage Kalman
yA filter. The series can be nonstationary. The state space model is

%
% x_ {t} =T x_{t-1} + H a_{t}

pA y_{t} =Y \beta + Z x_{t},

/A

% where the initial state vector is
b

b x_{d+1} = Ax\delta + \Xixc,

b

% and Var(c) = Sigma. See Gomez and Maravall (1994), "Estimation,
pA Prediction and Interpolation for Nonstationary Series with the
% Kalman Filter", Journal of the American Statistical

% Association, 89, 611-624. The filter is initialized at time t
% = d+1, where d is

107

h
h
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
b

138

the differencing degree, and the first d observations are stacked
to form the \delta vector.

INPUTS:
y: an array containing the input series
Y: a matrix containing regression variables
Z: the Z matrix
T: the T matrix
H: the H matrix
Sigma: the Sigma matrix
A: the A matrix
Xi: the Xi matrix
d: an integer, the degree of the differencing operator
OUTPUTS:
f: residual vector, whose sum of squares will be minimized
e: residual vector for inference
g: array containing the regression estimates
M: matrix containing the mse of the regression estimates
AA: the estimated augmented state vector at the end of filtering
Sigma: the Mse of A at the end of filtering

Iml1KF

function L=1m1KF(x,nd,s,S,p,ps,q,9s,9S)

h
h
h
b
h
h
o
h
o
h
h
h
h
/.
[/
/.

this function computes the L matrix for outlier detection
using the fast Kalman filter algorithm. L is the inverse of the
Cholesky factor of the covariance matrix of the data.

INPUTS:

OUTPUTS
L

X: an array containing the ARIMA parameter values
nd: an integer, the length of the differenced series
s: seasonality
S: second seasonality
AR order
ps: order of the AR of order s
q: order of the regular MA
gs: order of the MA of order s (1 at most)
gS: order of the MA of order S (1 at most)

: a lower triangular matrix

108

139 logF

function Y = logF(xx,f,varargin)

h

h

% This function evaluates the log of F’*F

140 lomonth

function Y = lomonth(Iy,Im,N,Mq)

T

% this function generates the length of month variable
% It works until 2100.

T

% input variables Iy : the initial year

yA Im : the initial period

yA N : the length of the desired vector

yA Mg : the series frequency (=12 for monthly,
pA =4 for quarterly)
T

% output variables Y : N x 1 array containing the trading day
yA variables

141 Iratiocr

% PURPOSE: performs likelihood ratio test for var model to determine
% optimal lag length. All models are estimated using the same sample
% size: nobs - maxlag.

% USAGE: [lagsopt,initres] = lratiocr(y,maxlag,minlag,prt,x)

% where: v = an (nobs x neqs) matrix of y-vectors

yA maxlag = the maximum lag length

b minlag = the minimum lag length

yA prt = flag for printing

% 0 = no, 1 = yes (default = 0)

yA X = optional matrix of variables (nobs x nx)

% (NOTE: constant vector automatically included)
R ——————.

% RETURNS: lagsopt = the optimum number of lags

b initres = an (maxlag x negs) matrix of initial residuals
pA corresponding to the estimated VARXs of order

109

142 Iratiocrax

unction [lagsopt,initres] = lratiocrax(y,maxlag,minlag,incr,prt,a,x)

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
o
h
h

PURPOSE: performs sequential likelihood ratio tests in varmax(p,p,p)
models to determine optimal p, starting from
varmax(minlag,minlag,minlag) and proceeding up to
varmax (maxlag,maxlag,maxlag). All models are estimated using
the same sample size: nobs - maxlag.To estimjate the models,
it requires as input the estimated innovations.

USAGE: 1lrratio(y,maxlag,minlag,incr,prt,a,x,seas)

where: y = an (nobs x neqs) matrix of y-vectors

maxlag = the maximum lag length
minlag = the minimum lag length
incr = the increment for the LR test

prt = flag for printing

0 = no, 1 = yes
(default = 0)
X = matrix of input variables (nobs x nx)
(NOTE: constant vector automatically included)
a = matrix of estimated innovations (nobs x negs)

143 Iratiocrx

f
b
h
b
o
h
h
b
o
h
h
h

unction [lagsopt,initres] = lratiocrx(y,maxlag,minlag,prt,x)
PURPOSE: performs likelihood ratio test for varx model to determine
optimal lag length. All models are estimated using the same sample
size: nobs - maxlag.
USAGE: [lagsopt,initres] = lratiocrx(y,maxlag,minlag,prt,x)
where: y = an (nobs x neqgs) matrix of y-vectors

maxlag = the maximum lag length
minlag = the minimum lag length
prt = flag for printing
0 = no, 1 = yes (default = 0)
X = matrix of input variables (nobs x nx)

110

http:maxlag.To

b (NOTE: constant vector automatically included)

% ___

% RETURNS: lagsopt = the optimum number of lags

pA initres = an (maxlag x neqs) matrix of initial residuals
b corresponding to the estimated VARXs of order
% 1,2,..., maxlag.
e

144 Iratiopppt

function [lagsopt,a,ferror] = lratiopppt(y,x,seas,maxlag,minlag,prt)

% PURPOSE: performs sequential likelihood ratio tests in varmax(p,p,p)
yA models to determine optimal p, starting from p=minlag and
% proceeding up to p=maxlag. All models are estimated

b using the same sample size: nobs - maxlag.

e

% USAGE: [lagsopt,ferror] = lratiopppt(y,x,seas,maxlag,minlag,prt)

% where: y = an (nobs x neqs) matrix of y-vectors

/A X = matrix of input variables (nobs x nx)

yA (NOTE: constant vector automatically included)

b seas = seasonality

yA maxlag = the maximum lag length. If empty on entry, it is
% calculated by the program as the order of the VARX
yA approximation.

yA minlag = the minimum lag length

b prt = flag for printing

% 0 = no, 1 = yes

b (default = 0)
R

% RETURNS: lagsopt, the optimum number of lags

yA a = residuals of the VARX approximation (nobs x
yA neqgs)

e

145 Iratiopqrl

function [lagsopt,ferror] = lratiopqri(y,l,a,x,maxlag,minlag,prt)
% PURPOSE: performs sequential likelihood ratio tests in the 1-th equation

% of a varmax(p,q,r) model to determine optimal p, q and r,
yA starting from varmax(minlag,minlag,minlag) and proceeding
yA up to varmax(maxlag,maxlag,maxlag). All models are

b estimated wusing the same sample size: nobs - maxlag.

111

S ——
% USAGE: [lagsopt,ferror] = lratiopqril(y,l,a,x,maxlag,minlag,prt)

% where: N = an (nobs x neqgs) matrix of y-vectors

% 1 = an integer to specify the 1-th variable of y
b a = an (nobs x neqs) matrix of residuals estimated with
yA a long VARX model

/A X = matrix of input variables (nobs x nx)

yA (NOTE: constant vector automatically included)
pA maxlag = the maximum lag length

yA minlag = the minimum lag length

pA prt = flag for printing

% 0 = no, 1 = yes

b (default = 0)
N —

% RETURNS: lagsopt, the optimum number of lags
A —

146 Iratiopqr

function [lagsopt,ferror] = lratiopqr(y,x,seas,maxlag,minlag,prt)
% PURPOSE: performs sequential likelihood ratio tests in varmax(p,q,r)

b models to determine optimal p, g and r, starting from

pA varmax (minlag,minlag,minlag) and proceeding up to

b varmax (maxlag,maxlag,maxlag). All models are estimated

yA using the same sample size: nobs - maxlag.
S

% USAGE: [lagsopt,ferror] = lratiopqr(y,x,seas,maxlag,minlag,prt)

% where: v = an (nobs x neqs) matrix of y-vectors

yA X = matrix of input variables (nobs x nx)

pA (NOTE: constant vector automatically included)

yA seas = seasonality

yA maxlag = the maximum lag length. If empty on entry, it is
b calculated by the program as the order of the VARX
% approximation.

b minlag = the minimum lag length

yA prt = flag for printing

/A 0 = no, 1 = yes

h (default = 0)
S —

% RETURNS: lagsopt, the optimum number of lags
S

112

147 Itflag

function xlag = ltflag(x,n)

% this function generates a matrix of n+1 lags from a matrix or vector
% to use in ARMAX models. The first lag is the zero lag.

e

% USAGE: xlag = 1tflag(x,nlag)
% where: x = a matrix of dimension nobs x nvar
yA nlag = number of lags to use in the 1tf method

% ___

% RETURNS:

b xlag = a matrix of lags (mobs-nlag) x ((nlag+l)nvar)
h x(t), x(t-1), x(t-2), ... x(t-nlag)

148 m2mor

function [Morp, ferror]=m2mor (M)

b

% Given an (s x r+1) matrix M, this function obtains an (s-r x s)

% matrix Morp such that Morp*M = 0. The last column of M is assumed to
% be an index Idx, such that for the i-th row of M, Idx(i) = O means

% that this row is linearly independent.

h

% Inputs : M: an (s x r+l1) matrix

% Output : Morp: an (s-r x s) matrix such that Morp*M = O.

149 macgf

function [c,ierror]=macgf (phi,th,Sigma,nc)

h

% This function computes the autocovariance function of a VARMA process
% phi(B)z_t=th(B)a_t

% The parameter nc is the number of desired autocovariances plus one,

% because the variance is included: c(0),c(1),...,c(nc-1)

150 marqdt

function [x,fjac,ff,g,iter,conf] = marqdt(info,x,varargin)

T

% This function minimizes a non-linear sum of squares function using
% Levenberg-Marquard’s method.

113

% Input arguments:
% info structure containing function names and optimization options

yA .

yA

AR v ol
b

yA

% .tol:
h o .jac:
b

pA

b

% .maxit:
% .nu0:
% .prt:
yA

% x:

% varargin:

T

a function to evaluate the vector ff of individual functions
such that ff’*ff is minimized

>0 x is passed from marqdt to f but not passed from f to
marqdt

=0 x is passed from marqdt to f and passed from f to marqdt
a parameter used for stopping

=1 evaluation of jacobian and gradient at the solution is
performed

=0 no evaluation of jacobian and gradient at the solution
is performed

maximum number of iterations

initial value of the nu parameter

=1 printing of results

=0 no printing of results

a vector containing the initial parameter values

arguments to be passed to function £

% Output arguments:

% x

pA

% fjac
% ff

% g

% iter

a vector of (untransformed) parameters containing the
solution

a matrix containing the jacobian at the solution

a vector containing the individual functions at the solution
a vector containing the (1/2)gradient at the solution

a scalar whose value is the number of iterations

151 matechelon

function [str,ferror] = matechelon(kro,s,m)

% PURPOSE:

obtains the matrix structure of a VARMAX model in echelon

% form, both in polynomial and state space form. The state space echelon

% form is:

b

% alpha_{t+1}
yA y_{t}

h

Fxalpha_{t} + B*x_t{t} + Kxa_{t}
H*alpha_{t} + D*x_{t} + a_{t}

% The VARMAX echelon form is
% phi(B)*y_{t} = gamma(B)*x_{t} + theta(B)a_{t},

T

% where B is the backshift operator, Bxy_{t} = y_{t-1}.

% __________

114

% USAGE: str
% where: kro
b s
% number of inputs

e
% RETURNS: a structure with the following fields

matechelon(kro,s,m)
a (1 x s) vector containing the Kronecker indices

number of outputs

=]
]

b s: number of outputs

h m: number of inputs

pA kro: a (1 x s) vector containing the Kronecker indices
yA phi: an (s x s x maxkro) array
pA theta: an (s x s x maxkro) array
% gamma: an (s x m x maxkro) array
% nparm: number of parameters

b npar: an (s x s) array

yA F: an (n x n) matrix

/A H: an (s x n) matrix

b K: an (n x s) matrix

b B: an (n x m) matrix

yA D: an (s x m) matrix

% where maxkro = max(Kronecker indices), n=McMillan degree =

% sum(Kronecker indices), npar is an array of indices necessary to

% define the Kronecker indices, phi,theta and gamma are the VARMAX

% matrices in echelon form and F, H, K, B and D are the VARMAX matrices
% in state space echelon form. The parameters in the echelon form are

% indicated with NaN.

e

152 mautcov

function str=mautcov(y,lag,ic,nr)

T

pA This function computes the autocovariance matrices of y(t) up to
b lag lag.

% ic = 1: compute the autocorrelation matrices

b 0: do not compute the autocorrelation matrices

% nr = number of parameters for Hosking’s portmanteau statistic
h

yA returns: a structure str containing

b c0: covariance at lag O

yA cv: three dimensional array containing the

h autocovariance matrices up to lag lag

yA r: the autocorrelation matrices up to lag lag

115

h
h
h
o
h
h
h

sgn: matrices containing the significance of the
autocorrelations according to the 2/sqrt(n) limits
sgnt: matrix containing all sgn matrices together
r0O: the autocorrelation matrix for lag zero
In addition, if nr is input,
gstat: the Q statistics up to lag
pval : the p-values of the Q statistics

153 mclyapunov

function [X,ferror] = mclyapunov(A,B,C)

h
h
o
h
h
h
h
h
h
h
b
h
h
o
h
o
h
b

This function computes the solution to the continuous time
LYAPUNOV equation
AX - XB=C

Input parameters:

A = a nxn matrix

B = a mxm matrix

C = a nxm matrix

Output parameters:

X = the solution of the continuous time Lyapunov equation

The method is as follows. First, compute the Schur decomposition of

A and B (complex version). Then, solve recursively a system of linear
equations.

QaTaQa’X-XQbTbQb’=C; TaQa’XQb - Qa’XQbTb = Qa’CQb;

Z=Qa’XQb; TaZ - ZTb = Qa’CQb; X=real(QaZQb’);

154 mconestim

function [xvf,str,ferror]=mconestim(y,x,str)

b
2
h
h
h
o
h
h
h

This function estimates a VARMAX model in echelon form with some of
its parameters possibly restricted to zero. Estimation is performed
using the conditional method. It is assumed that initial values
obtained with the three stages of the Hannan-Rissanen method are
available in str.beta3. These initial estimates can be obtained using
the functions MHANRIS, ESTVARMAXPQRPQR or ESTVARAMXKRO.

The state space echelon form is:

116

T

h
h

h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

alpha_{t+1}

y_{t}

Inputs: y

X

str:

Fxalpha_{t} + B*x_t{t} + Kxa_{t}
Hxalpha_{t} + D*x_{t} + a_{t}

The VARMAX echelon form is

phi(B)*y_{t} = gamma(B)*x_{t} + theta(B)a_{t},

where B is the backshift operator, Bxy_{t} = y_{t-1}.

= an (nobs x s) matrix of y-vectors

matrix of input variables (nobs x m)

(NOTE: constant vector automatically included)

a structure containing a preliminary model estimation

obtained with functions mhanris, estvaramxpqrPQR or

estvarmaxkro.

str:

Output: xvf: estimated parameters
a structure containing the estimated VARMAX model.

ferror: flag for errors

residcon:

sigmarcon:
phiscon:

thetascon:
gammascon:
phitvcon:
thetatvcon:
gammatvcon:

muscon:
mutvcon:

phistcon:

thetastcon:

The fields of structure str on output are the same as those on input
plus the following

an [(nobs-nlag) x s] matrix of standardized residuals

after estimation, where nlag = max(kro)

estimated covariance matrix of innovations
an (s x s x nlag) array containing the estimated AR

parameters

an (s x s x nlag) array

parameters

an (s x m x nlag) array

exogenous
an (s x s
estimated
an (s x s
estimated
an (s xm
estimated

constant

parameters

x nlag) array
AR parameters
x nlag) array
MA parameters
x nlag) array

containing the
containing the
containing the
containing the

containing the

exogenous parameters
an (s x 1) vector containing the estimated constant
an (s x 1) vector containing the p-values of the

estimated MA
estimated
p-values of the
p-values of the

p—values of the

same as phiscon but with coefficient matrices

premultiplied by phis(:,:,1)"{-1} (VARMAX model not in
echelon form)
same as thetascon but with coefficient matrices

117

h
h
h
h
h
h
h
h
h
h
h
b

155

function

h
b
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
2

156

function [abar,bbar,cbar,t,k]

h

gammastcon:

Fscon:

Kscon:
Bscon:
Dscon:
Hscon:

ferror

premultiplied by phis(:,:,1)"{-1} (VARMAX model not in
echelon form)
same as gammascon but with coefficient matrices

premultiplied by phis(:,:,1)"{-1} (VARMAX model not in
echelon form)
an (n x n) matrix containing
is the McMillan degree = sum

an
an
an
an

(n
(n
(s
(s

X
X
X

X

s)
m)
m)
n)

matrix
matrix
matrix
matrix

flag for errors

mecrcregr

containing
containing
containing
containing

[D,nr,yd,DA,ferror]=mcrcregr(y,x)

the estimated F, where n
of the Kronecker indices
the estimated K
the estimated B
the estimated D
the estimated H

This function applies the CRC criterion to the multivariate y series

to obtain the number of unit roots.

This criterion is the

generalization to the multivariate case of the one described for
univariate time series in the paper "A Strongly Consistent Criterion
to Decide Between I(1) and I(0) Processes Based on Different
Convergence Rates" by V\’{\i}ctor G\’{o}mez, (2013), Communications
in Statistics - Simulation and Computation, 42, pp. 1848-1864.
Maximum regular differencing considered is one.

Inputs: y: matrix containing the output series

x: matrix containing the input series

Output: D: an (ny x ny x seas+l) matrix ’differencing’ matrix

polynomial

nr: an integer, number of unit roots

yd= matrix containing the ’differenced’ series

DA= matrix of the form [DAr Indxr], where DAr is the regular
parameterization of the differencing polynomial, and
Indxr is an index vector to identify the 1.i. rows of DAr.

ferror= a flag for errors

mctrbf

= mctrbf(a, b, c, tol)
%CTRBF Controllability staircase form.

118

% [ABAR,BBAR,CBAR,T,K] = MCTRBF(A,B,C) returns a decomposition
% into the controllable/uncontrollable subspaces.

pA

% If the controllability matrix, Co=CTRB(A,B), has rank r <= n

% = SIZE(A,1), then there is a similarity transformation T such
% that

b

% Abar =T x*x A x T , Bbar =T x B, Cbar = C x T’

h
% and the transformed system has the form

h

pA | Anc 0 | | O |

% Abar = -—————————- , Bbar = --- , Cbar = [Cnc]| Cc].
% | A21 Ac | |Bc |

% -1 -1
% where (Ac,Bc) is controllable, and Cc(sI-Ac)Bc = C(sI-A)B.

T

% The last output K is a vector of length n containing the

% number of controllable states identified at each iteration

% of the algorithm. The number of controllable states is SUM(K).

157 mdfestimlr

function [D,DA,yd,ferror]=mdfestimlr(y,x,prt,nr)

h

% This function performs VARMAX(1,1) estimation with rank imposed and
% returns ’differencing’ polynomial and ’differenced’ series.

h

% Inputs: y: matrix containing the output series

% X: matrix containing the input series

yA prt = 1 print results of the VARX, VARMAX(p,p,p) tests

yA nr: an integer, number of regular unit roots

% Output: D: an (ny x ny x 2) ’differencing’ matrix polynomial

b yd= matrix containing the ’differenced’ series

% DA= matrix of the form [DAr Indxr], where DAr is the

b parameterization of the differencing polynomial, and

/A Indxr is an index vector to identify the 1.i. rows of DAr.
pA ferror= a flag for errors

158 mdifpol

function [Dr,Fd,ferror]=mdifpol(r,t,Pil,Pid1)

119

h
h
h
h
h
h
h
h
h
h
h
h
o
h
h
h
b

This function obtains the differencing polynomial matrix
correspondig to the matrix polynomial pi(z) = eye(s) + pi_lxz +
pi_2*z"2. Cases I(1) and I(2) are considered.

Input arguments:
r : an integer, the rank of Pil
t : an integer, the rank of alphaor’#*Pid(1)#*betaor (Johansen)
Pil: an s x s polynomial matrix, equal to -pi(1)
Pidl: an s x s polynomial matrix, equal to dpi(1)
Output arguments:
Dr: a matrix polynomial, equal to the differencing matrix
polynomial
Fd: a matrix containing information for the parametrization of
the differencing matrix polynomial
ferror: a flag for errors

159 mecf2mid

function [phi,D,DA,ferror]=mecf2mid(Lambda,alpha,betap)

h
h
h
h
h
h

hoo..

h
h
h
h
h
o
h
h
h
h
h
h
h
h

Given the error correction form

Phi(z) = Lambda(z)*(I-z*I) - Pix*z
corresponding to a polynomial matrix Phi(z) = I + Phi_1xz + Phi_1%z +
+ Phi_{p}*z~{p}, where Pi = -Phi(1) = alpha*betap, this function
obtains the ’differencing’ polynomial matrix D(z) = I + D_1xz, were

D_1 = -betaor*pinv(betaor’*betaor)*betaor’,

and betaor is the orthogonal complement of beta = betap’, and the
polynomial matrix phi(z) = I + phi_1xz + phi_1*z + ...
+ phi_{p-1}*z"{p-1} such that

Phi(z) = phi(z)*D(2).
On output, DA = [betaor Idx], where Idx is an index indicating the

rows of betaor that are linearly independent (=0) and those that are
linearly dependent (=1).

120

% Inputst: Lambda : a polynomial matrix of degree p-1

% alpha : an (s x r) matrix such that Pi = -Phi(1) =

b alphaxbetap

% betap : an (r x s) matrix

% Output : phi : a polynomial matrix of degree p-1

yA D : a polynomial matrix of degree 1

A DA : an (s x r+1) matrix such that DAf=[betaor Idx]

160 mexactestim

function [xvf,str,ferror]=mexactestim(y,x,str,Y)

2

% This function estimates a VARMAX model in echelon form with some of
% its parameters possibly restricted to zero using the exact maximum

% likelihood method with a fast square root filter. It is assumed that
% initial values obtained with the three stages of the Hannan-Rissanen
% or the conditional method are available in str.beta3. These initial
% estimates can be obtained using the functions MHANRIS,

% ESTVARMAXPQRPQR or ESTVARAMXKRO for the Hannan-Rissanen method or

% function MCONESTIM for the conditional method. The state space

% echelon form is:

%

% alpha_{t+1} = F*alpha_{t} + B*x_t{t} + Kxa_{t}

b y_{t} = Y_{t}*beta + Hxalpha {t} + D*x_{t} + a_{t}
yA

% The VARMAX echelon form is

yA

% phi(B)*y_{t} = gamma(B)*x_{t} + theta(B)a_{t},

yA

% where B is the backshift operator, Bxy_{t} = y_{t-1}.
h

% Inputs: y = an (nobs x s) matrix of y-vectors

b X = matrix of input variables (nobs x m)

% str: a structure containing a preliminary model estimation

b obtained with functions mhanris, estvaramxpqrPQR or

yA estvarmaxkro.

yA Y: (nobs*s x nbeta) matrix for regression variables. If empty,
yA the variables are centered and the mean is not estimated.

% Output: xvf: estimated parameters

yA str: a structure containing the estimated VARMAX model.

yA ferror: flag for errors

% The fields of structure str on output are the same as those on input

121

% plus
b
b
b
/A
h
b
h
b
h
b
h
b
A
b
A
h
b
h
b
h
b
h
b
A
b
A
h
b
h
b
h
b
h
b
b

161

function

h

the following

sigma2c:
sigmarexct:

e:
phisexct:

thetasexct:
gammasexct:
phitvexct:
thetatvexct:
gammatvexct:

musexct:
mutvexct:

phistexct:

thetastexct:

gammastexct:

Fsexct:

Ksexct:
Bsexct:
Dsexct:
Hsexct:

ferror

concentrated parameter estimate

estimated covariance matrix of innovations
regression paramters

stack of white noise residuals

an (s x s x nlag) array containing the
parameters

an (s x s x nlag) array
parameters

an (s x m x nlag) array
exogenous parameters

an (s x s x nlag) array containing the
the estimated AR parameters

an (s x s x nlag) array containing the
the estimated MA parameters

an (s x m x nlag) array containing the
the estimated exogenous parameters

an (s x 1) vector containing the estimated constant
an (s x 1) vector containing the p-values of the
constant

same as phiscon but with coefficient matrices
premultiplied by phis(:,:,1)"{-1} (VARMAX model not
in echelon form)

same as thetascon but with coefficient matrices
premultiplied by phis(:,:,1)"{-1} (VARMAX model not
in echelon form)

same as gammascon but with coefficient matrices
premultiplied by phis(:,:,1)"{-1} (VARMAX model not
an (n x n) matrix containing the estimated F, where
n is the McMillan degree = sum of the Kronecker
indices
an (n x
an (n x
an (s x m)
an (s x n)
flag for errors

containing the estimated MA

containing the estimated
p-values of

p-values of

p-values of

estimated K
estimated B
estimated D
estimated H

matrix

s)

m)

containing the
containing the
containing the
containing the

matrix
matrix
matrix

mexactestimec

[xvf,str,ferror]=mexactestimc(y,x,str,Y)

% This function estimates a VARMAX model in echelon form with some of

122

estimated AR

b

h
h
h
o
h
h
h
h
h
h
h
h
o
h

h
h
h
h
h
b
h
h
o
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

its parameters possibly restricted to zero. Estimation is performed
using the exact maximum likelihood method. It is assumed that initial
values obtained with the three stages of the Hannan-Rissanen or the
conditional method are available in str.beta3. These initial estimates
can be obtained using the functions MHANRIS, ESTVARMAXPQRPQR or
ESTVARAMXKRO for the Hannan-Rissanen method or function MCONESTIM for
the conditional method. The state space echelon form is:

alpha_{t+1}
y_{t}

Fxalpha_{t} + B*x_t{t} + Kxa_{t}
Y_{t}*beta + H*alpha {t} + Dxx_{t} + a_{t}

The parameters in beta are concentrated out of the likelihood.
The VARMAX echelon form is
phi(B)*y_{t} = gamma(B)*x_{t} + theta(B)a_{t},

where B is the backshift operator, B*xy_{t} = y_{t-1}.

Inputs: y an (nobs x s) matrix of y-vectors
X matrix of input variables (nobs x m)
str: a structure containing a preliminary model estimation
obtained with functions mhanris, estvaramxpqrPQR or
estvarmaxkro.
Y: (nobs*s x nbeta) matrix for regression variables.
(s x nbeta) if it is time invariant;
Output: xvf: estimated parameters
str: a structure containing the estimated VARMAX model.
ferror: flag for errors
The fields of structure str on output are the same as those on input
plus the following
sigma2c: concentrated parameter estimate
sigmarexct: estimated covariance matrix of innovations
regression paramters
e: stack of white noise residuals
phisexct: an (s x s x nlag) array containing the estimated AR
parameters
thetasexct: an (s x s x nlag) array containing the estimated MA
parameters
gammasexct: an (s x m x nlag) array containing the estimated
exogenous parameters
phitvexct: an (s x s x nlag) array containing the p-values of
the estimated AR parameters

123

h
h
h
o
h
h
h

h
b
h
b
h
h
h
h
h
h
h
h
h
h

162

function

h
h
b
h
h
h
h
h
h
h
h
h
h
h
h
h

thetatvexct:
gammatvexct:

musexct:
mutvexct:

phistexct:

thetastexct:
gammastexct:
Fsexct:
Ksexct:
Bsexct:

Dsexct:
Hsexct:

ferror

the estimated MA parameters

an (s x s x nlag) array containing the p-values of

an (s x m x nlag) array containing the p-values of

the estimated exogenous parameters

an (s x 1) vector containing the estimated constant
an (s x 1) vector containing the p-values of the
constant

same as phiscon but with coefficient matrices

premultiplied by phis(:,:,1)"{-1} (VARMAX model not
in echelon form)

same as thetascon but with coefficient matrices

premultiplied by phis(:,:,1)"{-1} (VARMAX model not

same as gammascon but with coefficient matrices

premultiplied by phis(:,:,1)"{-1} (VARMAX model not

an (n x n) matrix

n is the McMillan

indices
an (n x
an (n x
an (s x
an (s x

s)
m)
m)
n)

matrix
matrix
matrix
matrix

= flag for errors

mexactestimcd

containing the

estimated F, where

degree = sum of the Kronecker

containing the
containing the
containing the
containing the

estimated K
estimated B
estimated D
estimated H

[xvf,str,ferror]=mexactestimcd(y,str,Y,constant)

/A

/A

This function estimates a VARMA model in echelon form with some of its
parameters possibly restricted to zero followed by a multivariate
‘‘differenced’’ series. Estimation is performed using the exact
maximum likelihood method. It is assumed that initial values obtained
with the three stages of the Hannan-Rissanen or the conditional
method are available in str.beta3. These initial estimates can be

obtained using the functions MHANRIS, ESTVARMAXPQRPQR or ESTVARAMXKRO

for the Hannan-Rissanen method or function MCONESTIM for the
conditional method. The state space echelon form is:

alpha_{t+1}
y_{t}

F*alpha_{t} + Kxa_{t}
Y_{t}*beta + H*xalpha_{t} +a_{t}

The parameters in beta are concentrated out of the likelihood.

124

% The VARMA echelon form is

h
o
h
h
h
h
h
h
h
h
o
h
o
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
b

constant:

Output: xvf:

The fields of
plus the following

sigma2c:
sigmarexct:

phi (B)*y_{t} =

Inputs: y

theta(B)a_{t},

where B is the backshift operator, B*xy_{t} = y_{t-1}.

an (nobs x s) matrix of y-vectors

str: a structure containing a preliminary model estimation
obtained with functions mhanris, estvaramxpqrPQR or
estvarmaxkro.
Y: (nobs*s x nbeta) matrix for regression variables other

than

the mean. (s x nbeta) if it is time invariant;

=1 a constant should be included in the model for the

differenced series
0 no constant in the model for the differenced series

estimated parameters

str: a structure containing the estimated VARMAX model.

ferror: flag for errors

e:
phisexct:

thetasexct:
gammasexct:
phitvexct:
thetatvexct:
gammatvexct:

musexct:
mutvexct:

phistexct:

thetastexct:

structure str on output are the same as those on input

concentrated parameter estimate

estimated covariance matrix of innovations
regression paramters

stack of white noise residuals

an (s x s x nlag) array containing the estimated AR
parameters

an (s x s x nlag) array containing the estimated MA
parameters

an (s x m x nlag) array containing the estimated
exogenous parameters

an (s x s x nlag) array containing the p-values of
the estimated AR parameters

an (s x s x nlag) array containing the p-values of
the estimated MA parameters

an (s x m x nlag) array containing the p-values of
the estimated exogenous parameters

an (s x 1) vector containing the estimated constant
an (s x 1) vector containing the p-values of the
constant

same as phiscon but with coefficient matrices
premultiplied by phis(:,:,1)"{-1} (VARMAX model not
in echelon form)

same as thetascon but with coefficient matrices

125

% premultiplied by phis(:,:,1)"{-1} (VARMAX model not %

b gammastexct: same as gammascon but with coefficient matrices

b premultiplied by phis(:,:,1)"{-1} (VARMAX model not %
pA Fsexct: an (n x n) matrix containing the estimated F, where

b n is the McMillan degree = sum of the Kronecker

yA indices

yA Ksexct: an (n x s) matrix containing the estimated K

yA Bsexct: an (n x m) matrix containing the estimated B

yA Dsexct: an (s x m) matrix containing the estimated D

yA Hsexct: an (s x n) matrix containing the estimated H

pA ferror = flag for errors

163 mhanris2

function str = mhanris2(y,res,x,str)

% PURPOSE: performs the second step of the multivariate Hannan-Rissanen
% method for VARMAX models with restrictions and returns the estimated
% parameters

S

% USAGE: str = mhanris2(y,res,x,str)

% where: v = an (nobs x neqgs) matrix of y-vectors

yA res = an (nobs x neqs) matrix of residuals estimated

b with a long VARX model

yA X = matrix of input variables (nobs x nx)

b (NOTE: constant vector automatically included)

b str = a structure containing the structure of the VARMAX

o
% RETURNS: str = a structure containing the previous structure plus
yA the estimated parameters

% ___

164 mhanris3

function str = mhanris3(y,x,str)

% PURPOSE: performs the third step of the multivariate Hannan-Rissanen
% method for VARMAX models with restrictions and returns the estimated
% parameters

e

% USAGE: str = mhanris3(y,x,str)

% where: v = an (nobs x neqgs) matrix of y-vectors
yA X = matrix of input variables (nobs x nx)
b (NOTE: constant vector automatically included)

126

n
ct
Y

I

yA a structure containing the structure of the VARMAX
e —

% RETURNS: str = a structure containing the previous structure plus

% the estimated parameters

Y
165 mhanris21pqr

function str = mhanris21lpqr(y,l,res,x,str)

% PURPOSE: performs the second step of the multivariate Hannan-Rissanen
% method for VARMAX models with restrictions and returns the estimated

% parameters

% USAGE: str = mhanris2(y,res,x,str)

% where: y = an (nobs x neqs) matrix of y-vectors

% 1 = an integer to specify the 1-th variable of y

b res = an (nobs x neqs) matrix of residuals estimated

YA with a long VARX model

yA X = matrix of input variables (nobs x nx)

yA (NOTE: constant vector automatically included)

b str = a structure containing the structure of the VARMAX

e
% RETURNS: str = a structure containing the previous structure plus
yA the estimated parameters

% ___

166 mhanris

function str = mhanris(y,x,seas,str,hr3,finv2,mstainv,nsig,tsig)

% PURPOSE: applies the Hannan-Rissanen method for VARMAX models in

% echelon form with restrictions to the series y with inputs x. It

% returns a structure containing the estimated model. The state space
% echelon form is:

h

% alpha_{t+1}
yA y_{t}

t

% The VARMAX echelon form is

Fxalpha_{t} + B*x_t{t} + Kxa_{t}
H¥alpha_{t} + D*x_{t} + a_{t}

% phi(B)*y_{t} = gamma(B)*x_{t} + theta(B)a_{t},
b
% where B is the backshift operator, B*y_{t} = y_{t-1}.

127

h
h
h
o
h
h
h
h
h
b
h
h
o
h
h

h
h
h
h
h
h
h
h
h
h
h
h
b
h
h
b
h
h
h
h

h
h
h
h
h
h

USAGE: str = mhanris(y,x,seas,str,hr3,finv2,mstainv,nsig,tsig)

an (nobs x negs) matrix of y-vectors

matrix of input variables (nobs x nx)

(NOTE: constant vector automatically included)
seasonality, =1 no seasonality, >1 seasonality

seas
str

hr3

finv2

mstainv

nsig

tsig

RETURNS: str

a

structure containing model information as given

by function MATECHELON on output (model in echelon
form)

= 1, perform only the first two stages of the HR
method

0,

perform the three stages of the HR method, but

only if the second stage model is invertible.

1,
0,

=1,
invertibility. This can only be used when there
are no restrictions in the model.

=O,

a

make model invertible after second stage of HR
leave model as it is after second stage of HR
use the DARE for enforcing stationarity or

use multiplication by a small number.
(1 x 2) array. If nsig(i)=1, eliminate

nonsignificant parameters after the i-th stage of
the HR method, i=1,2. Default nsig=[0 0];

a

(1 x 2) array. If the t-value is less than

tsig(i), the parameter is eliminated after the

i_

th stage of the HR method and the model is

re-estimated, i=1,2. Default tsig=[.75 1.].

= a structure containing the the following

fields

s: number of outputs (negs)

m: number of
kro: a (1 x s)
phi: an (s x s
theta: an (s x s
gamma: an (s x m
nparm: number of

npar: an
an
an
an
an
an
residv: an

Owmxm ™

(s
(n
(s
(n
(n

(s

LT T T]

X

s)
n)
n)
s)
m)
m)

inputs (nx)
vector containing the Kronecker indices
x maxkro) array with NaNs as parameters
x maxkro) array with NaNs as parameters
x maxkro) array with NaNs as parameters
parameters

array to define the Kronecker indices
matrix with NaNs as parameters

matrix with NaNs as parameters

matrix with NaNs as parameters

matrix with NaNs as parameters

matrix with NaNs as parameters

(nobs x s) matrix containing the residuals obtained in

128

http:tsig=[.75

h
h
h
o
h
h
h
h

h
h
b
o
h
o
h
b
h

h

h

h
b
h
h

b
o
h
h
h

h
h

sigmarv:
vgam:

bind:
beta:

tv:
vgams:

vgamtv:
noninv2:
nonst2:
resid2:

sigmar?2:
musers:

phis:
phitv:
thetas:
thetatv:
gammas :
gammatv:
mu:
mutv:
phist:

thetast:

the first stage
an (s x s) covariance matrix of residv
a {[(2*nlag + 1)*s~2 + (nlag + 1)*s*m + neqs] x 1} vector
containing the stacks of phi (except the first matrix),
theta, gamma, and s NaNs to account for the mean, where
nlag = max(kro).
an [(nparm + s) x 1] index vector for the parameters in
vgam.
an [(nparm + s) x 1] vector containing the parameters
estimated in the second stage
an [(nparm + s) x 1] vector containing the t-values of beta
a vector like vgam but with the NaNs replaced with the
parameters estimated in the second stage.
a vector like vgam but with the NaNs replaced with the
t-values corresponding to the second stage.
= 1, if model is noninvertible after the second stage

0, if model is invertible after the second stage
= 1, if model is nonstationary after the second stage

0, if model is stationary after the second stage
an [(nobs-nlag) x s] matrix containing the residuals of the
second stage regression
covariance matrix of resid2
mean corresponding to the constant estimated in the second
stage
same as phi but with the NaNs replaced with the parameters
estimated in the second stage
same as phi but with the Nans replaced with the t-values
corresponding to the second stage
same as theta but with the NaNs replaced with the
parameters estimated in the second stage
same as theta but with the Nans replaced with the t-values
corresponding to the second stage
same as gamma but with the NaNs replaced with the
parameters estimated in the second stage
same as gamma but with the Nans replaced with the t-values
corresponding to the second stage
an (s x 1) vector containing the constant estimated in the
second stage.
an (s x 1) vector containing the t-values of the constant
estimated in the second stage.
same as phis but with coefficient matrices premultiplied by
phis(:,:,1)"{-1} (VARMAX model not in echelon form)
same as thetas but with coefficient matrices premultiplied

129

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

T

gammast:
Fs:

Hs:

Ks:

Bs:

Ds:
noninv3:
nonst3:
resid23:
sigmar23:
beta3:
tv3:
vgams3:
vgamtv3:
mus3:
phis3:
thetas3:
gammas3:
phitv3:
thetatv3:
gammatv3:
mutv3:

phist3:
thetast3:

by phis(:,:,1)"{-1} (VARMAX model not in echelon form)
same as gammas but with coefficient matrices premultiplied
by phis(:,:,1)"{-1} (VARMAX model not in echelon form)
same as F but with the NaNs replaced with the parameters
estimated in the second stage
same as H but with the NaNs replaced with the parameters
estimated in the second stage
same as K but with the NaNs replaced with the parameters
estimated in the second stage
same as B but with the NaNs replaced with the parameters
estimated in the second stage
same as D but with the NaNs replaced with the parameters
estimated in the second stage
= 1, if model is noninvertible after the third stage

0, if model is invertible after the third stage
= 1, if model is nonstationary after the third stage

0, if model is stationary after the third stage
an (nobs x s) matrix of residuals obtained before the third
stage using the VARMAX difference equation estimated in the
second stage starting with zeros.
covariance matrix of resid23
same as beta but containing the parameters
estimated in the third stage
same as tv but containing the t-values corresponding to the
third stage
same as vgams but with the parameters estimated in the
third stage
same as vgamtv but with the t-values corresponding to the
third stage
same as mu but with the constant estimated in the third
stage
same as phis but containing the parameters estimated in the
third stage
same as thetas but containing the parameters estimated in
the third stage
same as gammas but containing the parameters estimated in %
same as phitv but containing the t-values corresponding to %
same as thetatv but containing the t-values corresponding
to the third stage
same as gammatv but containing the t-values corresponding %
same as mutv but containing the t-values corresponding to %
same as phist but containing the parameters estimated in %
same as thetast but containing the parameters estimated in %

130

the -
the

to tl
the
the tl

the

%» gammast3: same as gammast but containing the parameters estimated in % the

pA Fs3: same as Fs but containing the parameters estimated in the
b third stage

yA Ks3: same as Ks but containing the parameters estimated in the
/A third stage

pA Bs3: same as Bs but containing the parameters estimated in the
b third stage

yA Ds3: same as Ds but containing the parameters estimated in the
yA third stage

yA Hs3: same as Hs but containing the parameters estimated in the
yA third stage

yA resid3: an [(nobs-nlag) x s] matrix of residuals corresponding to % the -

% sigmar3: covariance matrix of resid3

% ___

167 mid2mecf

function [Pi,Lambda,alpha,betap,ferror]=mid2mecf (phi,D,DAf)

h

% Given a polynomial matrix of the form phi(z)*D(z), where phi(z) = I +
% phi_1%z + phi_1*xz + ... + phi_{p}*z"{p} is an autoregressive

% polynomial matrix and D(z) = I + D_1*z is a ’differencing’ polynomial
% matrix, this function obtains the error correction form such that

h

yA phi(z)*D(z) = Lambda(z)*(I-z*I) - Pixz,

h

% where Lambda(z) = I + Lambda_1*z + ... + Lambda_{p-1}*z"{p-1} and Pi =
% -phi(1)*D(1). It is assumed that

h

% D_1 = -betaor*pinv(betaor’*betaor)*betaor’,

h

% where DAf = [betaor Idx] and Idx is an index indicating the rows of

% betaor that or linearly independent.

b

% Inputs : phi: a polynomial matrix of degree p

yA D: a polynomial matrix of degree 1

A DAf: an (s x r+1) matrix such that DAf=[betaor Idx]

% Output : Pi : a matrix such that Pi = -phi(1)*D(1) = alphaxbetap
pA Lambda : a polynomial matrix of degree p-1

yA alpha : an (s x r) matrix

% betap : an (r x s) matrix

131

168 mifmin

function [y,fval,exitflag] = mifmin(r, den, x1, x2)
yA

% minimization function called in candec

169 minfm

function infm = minfm(f,tr,mvx,tolf,maxit,nu0, jac,prt,chb,inc)

Ok sk sk sk ok sk sk ok ok sk ok ok ok ok sk o ok ok sk o ok ok ok ok sk ok ok sk ok ok sk ok ok ok sk ok ok sk ok sk ok ok sk s ok ok sk ok ok ok ok ok ok ko ok ok ok ok ook ok ok ok
% This function puts the function name and optimization options into

% structure infm

h

% INPUTS:

yA f : a function to evaluate the vector ff of individual functions
yA such that ff’*ff is minimized

pA tr > 0 : x is passed from marqdt to f but not passed from f to
A marqdt

pA =0 : x is passed from marqdt to f and passed from f to

b marqdt

% mvx : =1 exact maximum likelihood

b =0 unconditional least squares

yA tolf : parameter used for stopping

% maxit : maximum number of iterations

yA nu0 : initial value of the nu parameter

b jac = 1 : evaluation of jacobian and gradient at the solution is
yA performed

pA = 0 : no evaluation of jacobian and gradient at the solution
yA is performed

% prt = 1 : printing of results

1
b = 0 : no printing of results
% chb = 1 : compute the beta estimate and its MSE
b 0 : do not compute the beta estimate and its MSE
0, the initial states in the filter equations to obtain the

pA inc =
yA filtered variables are equal to zero (not estimated)
yA = 1, the initial states in the filter equations are estimated

170 minft

function inft = minft(fid,fh,wd,nd,scale)
Of s s e ke ok ot ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk s ok o o ok ok ok sk sk ok ke ok ok ook ok ok ok ok sk sk sk sk sk sk sk sk sk sk s sk sk ok ok sk sk sk sk sk s koo ok ok ok ok

% This function puts the printing options into structure inft

132

T

b INPUTS:

b .fid: the device on which the table will be written

pA .fh: flag for header and years

b .wd: format width

b .nd: number of decimal points

b .scale: =1 scale data if necessary

YA =0 do not scale data

h

T OUPTUT:

% inft: structure with printing options given by the inputs

171 miout

function iout = miout(omet,C,delta,schr,nrout,nind,tip,Yo,ornames)

T

% function to create a structure containing parameters about outlier
% detection

172 mlyapunov

function [P,ferror] = mlyapunov(F,Q,eigmod)

h

T

yA This function computes the solution to the LYAPUNOV equation
b P=FPF’ + Q

h

% Input parameters:

% F = a nxn matrix

% Q = a nxn symmetric matrix

% eigmod = a number with which the modulus of the eigenvalues of F
/A will be compared

% Output parameters:

h P = the solution of the Lyapunov equation

173 mnorm

function nr = mnorm(x)

pA given an n-vector x, this function calculates the square of the
h euclidean norm of x.

T

0

133

h
h
h
h
h
h
h
h
h
h
h
b
o
h
o
h
h

the euclidean norm is computed by accumulating the sum of
squares in three different sums. the sums of squares for the
small and large components are scaled so that no overflows
occur. non-destructive underflows are permitted. underflows
and overflows do not occur in the computation of the unscaled
sum of squares for the intermediate components.
the definitions of small, intermediate and large components
depend on two constants, rdwarf and rgiant. the main
restrictions on these constants are that rdwarf”2 not
underflow and rgiant”2 not overflow. the constants
given here are suitable for every known computer.

USAGE: nr = mnorm(x)

where: X = an n-dimensional vector

174 mobsvf

f
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

unction [abar,bbar,cbar,t,k] = mobsvf(a,b,c,tol)
OBSVF 0Observability staircase form.

[ABAR,BBAR,CBAR,T,K] = MOBSVF(A,B,C) returns a decomposition
into the observable/unobservable subspaces.

If the observability matrix, Ob=0BSV(A,C), has rank r <= n =
SIZE(A,1), then there is a similarity transformation T such that

Abar =T * A *T> , Bbar =T * B , Cbar = C * T’
and the transformed system has the form
| Ano A12] | Bno |
Abar = -—————————- , Bbar = ---— , Cbar = [0 | Co].

| 0 Ao | |Bo |

-1 -1
where (Ao,Bo) is controllable, and Co(sI-Ao) Bo = C(sI-A) B.

The last output K is a vector of length n containing the
number of observable states identified at each iteration

134

T

175

of the algorithm.

The number of observable states is SUM(K).

modelstruc

function models = modelstruc(xv,y,Y,pfix,pvar,xf,modescr,datei,npr)
9k ke ok sk sk ok sk sk ok sk ok sk 3 ok sk sk ok sk ok ok ok ok 3 ok K ok ok ok ok ok sk 3 ok sk sk ok K ok ok 3 ok K 3 ok K ok ok ok ok ok sk sk ok sk sk ok ok ok ok ok sk ok ok

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
b
h
b
h
h
o
h
h
h
b
h
h
o
h

This function creates a structure containing all the information
needed for a structural model.

This function allows for other values of freq besides 1, 4 and 12.
Note that freq is a field of structure datei and that it is also the
number of seasons. Therefore, it determines the seasonal component.

INPUTS:

XV

y
Y

pfix
pvar

xf
modescr

datei

vector with parameters to be estimated

data vector

(see description below *)

: matrix for regression variables. It contains the stack

of the Y_t matrices

array with fixed parameter indices

array with variable parameter indices

vector with fixed parameters (see description below *)
structure with the following fields:

(for the list of the codes of the components, see

description below **)

.trend :

.slope
.seas
.cycle
.x11

.x12

.ar

.irreg :

.conc

.stord :

trend
slope

code
code

seasonal code

cycle
lower
cycle

upper
cycle

code

bound of the frequency interval in which the
is supposed to be defined

bound of the frequency interval in which the
is supposed to be defined

AR code

irregular code

index for the parameter that is concentrated out
(see description below **x)

array

containing parameter indices

(see description below **xx*)
calendar structure (output of function cal)
number of forecast

* xv and xf are subvectors of the parameter vector x, where the

135

h
h
h
h
h
h
h
h
h
h
h
h
o
h
o
h
h
h
h
h
h
h
b
o
h
o
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
h

parameters, except the one that is concentrated out, are put in
the following order:

- irregular standard deviation

- level standard deviation

- slope standard deviation

- seasonal standard deviation

- autoregressive standard deviation

- cycle standard deviation

7,8 - cycle parameters, rho and frequency

9,10,.. autoregressive parameters

o Ok WN -

** codes for the components:
trend = -1 constant
1 stochastic

2 Butterworth tangent

slope = -1 constant
1 stochastic

seas = -1 fixed dummy seasonality
1 stochastic dummy seasonality
2 trigonometric seasonality
4 Butterworth tangent

cycle = 1 structural model cycle
2 Butterworth sine cycle

irreg = 1 stochastic

ar = k autoregressive component of order k

*x*x One of the standard deviations is concentrated out and,
therefore, is not estimated. The field conout contains information
about this standard deviation. The user can select this standard
deviation or the program can do it automatically instead. The biggest
variance should be selected.

*x*x* stord is an index such that its i-th element indicates to which
component (according to the ordering above) belongs the i-th
element of x.

OUTPUTS:
models : the same structure as modescr (with .ar renamed to .arp)
plus the following fields:
matrices according to the model

y_t = X_txbeta + Z_t*alpha_t + G_t*epsilon_t

136

h
h
h
o
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
b
h
h
o
h
o
h
h
h
h
h
b
h
b
h

alpha_{t+1}= W_t*beta + T_t*alpha_t + H_txepsilon_t
where epsilon_t is (0,sigma”2I),

with initial state

alpha_1= c + W_Oxbeta + a_1 + A_1x*delta

where ¢ is (0,0Omega) and delta is (0,kI) (diffuse)

More specifically:

.ins

.X : an (n x nbeta) matrix containing the X_t matrices;
a (1 x nbeta) if it is time invariant;
it can be []

.Z : an (n x nalpha) matrix containing the Z_t matrices;

a (1 x nalpha) matrix if it is time invariant

.G : an (n x nepsilon) matrix containing the G_t matrices;
a (1 x nepsilon) matrix if it is time invariant

.W : an (n*nalpha x nbeta) matrix containing the W_t
matrices; an (nalpha x nbeta) matrix if it is time
invariant; it can be []

.T : an (n*nalpha x nalpha) matrix containing the T_t
matrices; an (nalpha x nalpha) matrix if it time
invariant

.H : an (n*nalpha x nepsilon) matrix containing the H_t
matrices; an (nalpha x nepsilon) if it is time
invariant

an nalpha x (cctcwO+cal+ccal) matrix containing the initial

state information, according to array i below

a 1 x 4 array containing 4 integers, i=[cc cw0 cal ccall,

where

cc = nalpha if ¢ is not missing (0 if c missing)
cw0 = number of columns in W_O (0 if W_O missing)
cal =1 if a_1 is not missing (0 if a_1 missing)
ccal = number of columns in A_1 (0 if A_1 missing)

9 sk ke ok sk sk ok sk ok ok ok sk ok sk sk ok sk ok ok ok sk s ok sk ok ok s ok ok ok sk s ok sk sk ok ok ok 3 ok sk ok sk ok ok s ok ok ok sk sk ok sk sk ok ok ok ok K ok ok

176

modelstrucmm

function models = modelstrucmm(xv,y,Y,pfix,pvar,xf,modescr,npr)
9k ke ok sk sk ok sk sk ok sk ok sk ok sk sk ok K ok ok 3 ok ok 3 ok K 3k ok sk ok ok ok 3 ok K sk ok ok ok ok ok 3 ok 3k sk ok sk ok K ok ok ok ok sk ok ok ok ok ok ok ok ok

% This function creates a structure containing all the information

137

h
h
h
h
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
b
h
h
o
h
h
h
h
h
h
h
h
h
b
h
b
o
h
h
hh
h
h
b

needed for a structural model with complex seasonal patterns. The
seasonal component is of the form

s_t = \sum_{j=1}"{N} s_{t}"j, s_{t}"j =
\sum_{i=1}"{m_j}s_{i,t}"j, where n_j is the period of s_{t}"j, m_j
is the number of harmonics of s_{t}"j and

[s_{i,t}"] 1 [cos(2\pi i/n_j) sin(2\pi i/n_j)] G_{i,t> 1
[s_{i,t}"{* jH= [-sin(2\pi i/n_j) cos(2\pi i/n_j)] + [j~*_{i,t}].

INPUTS:
xv : vector with parameters to be estimated
(see description below *)
y : data vector
Y : matrix for regression variables. It contains the stack
of the Y_t matrices
pfix : array with fixed parameter indices
pvar : array with variable parameter indices
xf : vector with fixed parameters (see description below *)
modescr : structure with the following fields:
(for the list of the codes of the components, see
description below **)
.trend : trend code
.slope : slope code
.seas : a cell array whose elements are 1 x 2 dimensional
arrays defining the seasonal patterns. The two
numbers in each array, [per_j,m_jl, are the period
and the number of harmonics.
.cycle : cycle code
.x11 : lower bound of the frequency interval in which the
cycle is supposed to be defined
.x12 : upper bound of the frequency interval in which the
cycle is supposed to be defined
.ar : AR code
.irreg : irregular code
.conc : index for the parameter that is concentrated out
(see description below **x)
.stord : array containing parameter indices
(see description below **xx)
npr : number of forecast
* xv and xf are subvectors of the parameter vector x, where the
parameters, except the one that is concentrated out, are put in the
following order:

138

h
h
h

- irregular standard deviation
level standard deviation
- slope standard deviation

w N -
|

% 4,...3+N - ith-seasonal standard deviation, where N = number of
b seasonal patterns

yA 4+N - autoregressive standard deviation

b 5+N - cycle standard deviation

% 6+N,7+N - cycle parameters, rho and frequency
% 8+N,9+N,.. autoregressive parameters
T

% ** codes for the components:

pA trend = -1 constant

b 1 stochastic

/A 2 Butterworth tangent

% slope = 1 stochastic

b cycle = 1 structural model cycle

yA 2 Butterworth sine cycle

b irreg = 1 stochastic

yA ar = k autoregressive component of order k

h

% *** One of the standard deviations is concentrated out and,

% therefore, is not estimated. The field conout contains

% information about this standard deviation. The user can select
pA this standard deviation or the program can do it automatically
b instead. The biggest variance should be selected.

h

% ***x stord is an index such that its i-th element indicates to which
yA component (according to the ordering above) belongs the i-th

b element of x.
R R——————.—,
h

% OUTPUTS:

% models : the same structure as modescr (with .ar renamed to .arp)

/A plus the following fields:

b matrices according to the model

A

pA y_t = X_t*beta + Z_t*alpha_t + G_t*epsilon_t

b alpha_{t+1}= W_t*beta + T_t*alpha_t + H_t*epsilon_t
h

/A where epsilon_t is (0,sigma”2I),

h

b with initial state

T

139

h
h
h
o
h
h
h
h
h
h
h
h
h
h
h
h
b
h
h
h
h
h
h
h
h
h
h
h
h

alpha_1= c + W_Oxbeta + a_1 + A_lx*delta

where ¢ is (0,0Omega) and delta is (0,kI) (diffuse)

More specifically:

.ins

.X : an (n x nbeta) matrix containing the X_t matrices;
a (1 x nbeta) if it is time invariant;
it can be []

.Z : an (n x nalpha) matrix containing the Z_t matrices;
a (1 x nalpha) matrix if it is time invariant

.G : an (n x nepsilon) matrix containing the G_t matrices;
a (1 x nepsilon) matrix if it is time invariant

.W : an (n*nalpha x nbeta) matrix containing the W_t
matrices; an (nalpha x nbeta) matrix if it is time
invariant; it can be []

.T : an (n*nalpha x nalpha) matrix containing the T_t
matrices; an (nalpha x nalpha) matrix if it time
invariant

.H : an (n*nalpha x nepsilon) matrix containing the H_t
matrices; an (nalpha x nepsilon) if it is time
invariant

an nalpha x (cc+cwO+cal+ccal) matrix containing the initial

state information, according to array i below

a 1 x 4 array containing 4 integers, i=[cc cwO cal ccall,

where

cc = nalpha if ¢ is not missing (0 if c¢ missing)

cw0 = number of columns in W_O (0 if W_O missing)
cal =1 if a_1 is not missing (0 if a_1 missing)
ccal = number of columns in A_1 (0 if A_1 missing)

%***

177

mparm

function parm= mparm(s,S,dr,ds,dS,p,ps,q,qs,qS,ny,nreg, ...

h

pfix,pvar,lam,flagm,trad,leap,east,dur,ninput,nmiss)

% function to create a structure containing ARIMA parameters

178

mpbf

function x=mpbf(a,b);
Jmultiplies pol. in B (aO+al*B+...)by pol.in F=B~{-1} (bO+blxF+...)

140

%in output:x(1) is the coeff. of F~(max)

179 mprint

function mprint(y,info)
% PURPOSE: print an (nobs x nvar) matrix in formatted form

% ___

% USAGE: mprint (y,info)

% where: y = (nobs x nvar) matrix (or vector) to be printed

yA info = a structure containing printing options

b info.begr = beginning row to print, (default = 1)

pA info.endr = ending row to print, (default = nobs)

b info.begc = beginning column to print, (default = 1

yA info.endc = ending column to print, (default = nvar)

% info.cnames = an (nvar x 1) string vector of names for columns
yA (optional) e.g. info.cnames =

% strvcat(’coll’,’col2’);

yA (default = no column headings)

pA info.rnames = an (nobs+l x 1) string vector of names for rows
b (optional)

% e.g. info.rnames = strvcat(’Rows’,’rowl’,’row2’);
/A (default = no row labels)

pA info.fmt = a format string, e.g., ’%12.6f’ or ’%12d’

b (default = %10.4f)

yA or an (nvar x 1) string containing formats

/A e.g.,

% info.fmt=strvcat(’%12.6f°,°%12.2f>,°%12d’); for
b nvar = 3

yA info.fid = file-id for printing results to a file

pA (defaults to the MATLAB command window)

% e.g. fid = fopen(’file.out’,’w’);

pA info.rflag = 1 for row #’s printed, O for no row #’s (default
/A =0)

% info.width = # of columns before wrapping occurs (default =
/A 80)
S —

he.g. in.cnames = strvcat(’coll’,’col2’);

% in.rnames = strvcat(’rowlabel’,’rowl’,’row2’);

yA mprint (y,in), prints entire matrix, column and row headings

% in2.endc = 3; in2.cnames = strvcat(’coll’,’col2’,’col3’);

% or: mprint(y,in2), prints 3 columns of the matrix, just column

yA headings

141

yA or: mprint(y), prints entire matrix, no column headings or row
b labels

% NOTES: - defaults are used for info-elements not specified

pA - default wrapping occurs at 80 columns, which varies

b depending on the format you use, e.g. %10.2f will wrap
yA after 8 columns

S —
% SEE ALSO: tsprint, mprint_d, lprint
S ——

% written by:

% James P. LeSage, Dept of Economics
% University of Toledo

% 2801 W. Bancroft St,

% Toledo, OH 43606

% jpl@jpl.econ.utoledo.edu

180 mprintar
function mprintar(ar,info,tit,strt)

% PURPOSE: print an (np,mp,kp) array in formatted form
A —

% USAGE: mprint (ar,info)

% where: ar = (np,mp,kp) array to be printed

yA tit = a character string (tilte) for each (np,mp)

b matrix

yA strt = an integer to start the counting of the (np,mp)
b matrices

yA info = a structure containing printing options

pA info.begr = beginning row to print, (default = 1)

% info.endr = ending row to print, (default = np)

yA info.begc = beginning column to print, (default =1

b info.endc = ending column to print, (default =

% mp*kp)

b info.cnames = an (mp*kpr x 1) string vector of names for

yA columns (optional) e.g. info.cnames =

% strvcat(’coll’,’col2’);

yA (default = no column headings)

yA info.rnames = an (np+l x 1) string vector of names for rows
yA (optional) e.g. info.rnames =

% strvcat (’Rows’,’rowl’, ’row2’);

b (default = no row labels)

142

mailto:jpl@jpl.econ.utoledo.edu

h
h
h
o
h
h
h
h
h
h
h

181

info.fmt

info.fid

info.rflag

info.width

a format string, e.g., ’%12.6f’ or ’%12d4’
(default = %10.4f) or an (mp*kp x 1) string
containing formats

file-id for printing results to a file

(defaults to the MATLAB command window)

e.g. fid = fopen(’file.out’,’w’);

1 for row #’s printed, O for no row #’s (default

0)

of columns before wrapping occurs (default =

80)

mprintr

function mprintr(result,fid)
% PURPOSE: print a two column table with the estimates and their
% t-values contained in structure result

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
b
h

file identifier for output (default = 1)
a structure containing estimation results with the
following fields:

USAGE: mprint (x,info)
where: fid
result
xvf

empty

estimated parameters
.xf : vector of fixed parameters
.sigma2c : concentrated parameter estimate
.Sigmar : estimated exact covariance matrix of residuals
.tv : t-values of the estimated varma parameters
.residexct : matrix containing recursive residuals, only if Y is

.e : vector of standardized residuals at the end of
estimation (Q’_2xy)

.ff : vector of nonlinear functions whose sum of squares is
minimized at the end of estimation

oo

: vector of estimated regression estimates
: matrix of mse of h

.A : estimated state vector, x_{t|t-1}, obtained with the
Kalman filter at the end of the sample

.P : Mse of A

.tvr: vector of t-values for h

.ferror : flag for errors

143

182 mshape

function SigBar = mshape(Tm)
%This function computes the shape of a matrix

183 mulFA

function [C, ierror] = mulFA(F,A,kro)

h

% This function computes the product of the matrices F and A, where F is
% assumed to be in echelon form (x_{t+1} = Fxx_{t} + Kxa_{t}).

184 mulHA

function [C, ierror] = mulHA(H,A,kro)
pA

% This function computes the product of the polynomial matrices H and A

185 mulhkp

function [HKp]=mulhkp (H,K)

o

% this function multiplies matrix H by matrix K’
% assuming H*K’ is symmetric

186 mulmols

function [beta,M,e]l=mulmols(y,Y)

h

% Given the multivariate linear regression model

h

% y’_t = Y’_t*beta + epsilon’_t, t=1,2,...,n,

h

% or, more compactly,

h

% y =Y«B + E,

h

% this function computes the multiple OLS estimator, its covariance
% matrix and the residuals. The covariance matrix is not multiplied by
% Sigmar.

144

R ————.
% USAGE: [beta,M,e]l=mulmols(y,Y)

% where: y = an (n x m) matrix of y-vectors

% Y = matrix of input variables (n x nY)
A —

% RETURNS: beta = an (nY x m) matrix of regression coefficients

b M = an (nY x nY) matrix containing (Y’*Y) ~{-1}

yA e = an ((n-nY) x m) matrix containing the residuals

% ___

187 mulols

function beta=mulols(y,Y)
ko sk ko ko sk ok ok ok sk ok ok ok sk ok ok sk ok ks sk ok sk ok ok sk ko ok sk ok ok sk ko ok sk ko sk sk ko sk ok koo kK o

% This function computes the multiple OLS estimator

h

% INPUTS:

yA y : (n x p) data matrix, where

b p is the number of time series and n is the length of them
yA Y : (n x nreg) matrix with regression variables, where

pA nreg is the number of regression variables

h

% OUTPUT:

yA beta : (nreg x p) vector of regression coefficients

188 multval

function [beta,tv,sigmar,covvecbeta,corvecbeta]=mu1tval(y,Y)

h

% This function computes the multiple OLS estimator and the t-values of
% the multivariate linear regression model

h

% y’_t = Y’_txbeta + epsilon’_t, t=1,2,...,n.

h

% Matrices y and Y contain the stack of y’_t and Y’_t, respectively.

Y

% USAGE: [beta,tv,sigmar,covvecbeta,corvecbetal=multval(y,Y)

% where: y = an (n x m) matrix of y-vectors

% Y = matrix of input variables (n x nY)
S —

% RETURNS: beta = an (nY x m) matrix of regression coefficients
b tv = an (nY x m) matrix containing the t-values

145

% sigmar = an (m x m) matrix containing the residual

b covariance matrix

b covvecbeta = an (nY#m x nY*m) matrix containing the covariance
/A matrix of vec(beta)

b corvecbeta = an (nY#*m x nY*m) matrix containing the correlation
/A matrix of vec(beta)

% ___

189 nberrecplot

function nberrecplot(recdates,y,color)
ok ok ok ok ok ok o ok K ok ok ok K ok K oK KoK K oK KoK KoK K KKK KK KK KKK KKK KKK KKK KKK K KK ok K

yA Function nberrecplot plots areas specifying recession dates
h

A INPUTS:

b REQUIRED

% recdates : (mrec x 4) matrix with the peak and trough dates;
% mrec is the number of recessions;

b Columns:

yA 1. year of each peak

pA 2. month of year (from 1.) of each peak

yA 3. year of each trough

pA 4. month of year (from 3.) of each trough

yA y : vector with at least two elements;

b y can be a series or a vector with two

% elements, in each case the minimum and the maximum
pA value will be used for specifying the height of the
b rectangular area;

h

A OPTIONAL (the order does not matter)

yA color : color specification, e.g.

b color = ’red’

% color = [0.6,0.5,0.9];

b default is [0.8,0.8,0.8] (gray)
R R g S LI L L L L

190 nse2

function [ct2,str] = nse2(y,residv,x,tsig2,str)

% PURPOSE:

% Eliminates nonsignificant parameter after second step of HR method.
% The Kronecker indices should be preserved. This means

146

h
h
h
h
h
h
h
h
h
h
h
h
o
h

that in each row of the VARMAX model the maximum degree is the
Kronecker index. For example, if s=1, p or q is equal to the
Kronecker index. If s=2, in the first row, p_1 or g_1 is equal to
k_1, in the second row, p_2 or q_2 is equal to k_2, etc.

Put nsig2=1 and choose tsig2 for insignificant t-value

USAGE: [ct2,str] = nse2(y,residv,x,tsig2,str)

where: str = a structure containing the structure of the VARMAX
model

RETURNS:

ct2 = the number of parameters eliminated
str = a structure containing the inverted model

191 nse3

function [ct3,str] = nse3(y,x,tsig3,invert2,str)

h
b
h
b
o
b
h
b
o
h
h
h
h
h
h
h
h

PURPOSE:

Eliminates nonsignificant parameter after third step of HR method.
The Kronecker indices should be preserved. This means

that in each row of the VARMAX model the maximum degree is the
Kronecker index. For example, if s=1, p or q is equal to the
Kronecker index. If s=2, in the first row, p_1 or g_1 is equal to
k_1, in the second row, p_2 or q_2 is equal to k_2, etc.

Put nsig3=1 and choose tsig3 for insignificant t-value

USAGE: [ct3,str] = nse2(y,residv,x,tsig2,str)

where: str = a structure containing the structure of the VARMAX
model
RETURNS:

ct3 = the number of parameters eliminated

str = a structure containing the inverted model

192 nselimhr?2

£
T
T

unction [mp, minc, mint] = nselimhr2(y,x,str)
PURPOSE: eliminates nonsignificant parameters in the second stage of
the Hannan-Rissanen method for VARMAX models with restrictions

% USAGE: [mp, minc, mint] = nselimhr2(y,x,str)

% where: y = an (nobs x negs) matrix of y-vectors

pA X = matrix of input variables (nobs x nx)

pA (NOTE: constant vector automatically included)

b str = a structure containing the structure of the
T VARMAX model

% ___
% RETURNS:

yA minc = a 1 x 3 array containing the index in the array of
/A the eliminated parameter

% minc = ’ph’, ’th’ or ’ga’, referring to AR, MA or X part
h to which the parameter belongs

b mint = the t-value of the eliminated parameter

% ___

193 nselimhr3

function [mp, minc, mint] = nselimhr3(y,x,str)

% PURPOSE: eliminates nonsignificant parameters using the

% Hannan-Rissanen method for VARMAX models with restrictions
e —

% USAGE: [mp, minc, mint] = nselimhr3(y,x,str)

% where: y = an (nobs x negs) matrix of y-vectors

yA X = matrix of input variables (nobs x nx)

b (NOTE: constant vector automatically included)

b str = a structure containing the structure of the
b VARMAX model

% ___
% RETURNS:

/A minc = a 1 x 3 array containing the index in the array of
YA the eliminated parameter

yA minc = ’ph’, ’th’ or ’ga’, referring to AR, MA or X part
h to which the parameter belongs

b mint = the t-value of the eliminated parameter

% ___

194 nullref

function [K,ierror] nullref (R, Indx)

h

% USAGE: [K,ierror] = nullref(R,Indx)

148

% where: R an n x m matrix in column echelon form obtained after

% applying housref on A’. Thus, if [Q,r,Indx,ierror] =
% housref (A’), then R=r’.

pA Ind = an index containing the 1.i. rows (0) and the 1.d.

yA rows (1) of R.

.,
% RETURNS:

yA K = a matrix in reversed row echelon form containing a
pA basis of the left null-space of R. Therefore, K*R=0;
% ierror =1, dimension mismatch in R and Indx

b =0, there are no errors on input

% ___

195 OLSres

function [olsres] = OLSres(out)

h

b

% This function obtains the OLS residuals after having used function
% arimaestos, arimaestni or arimaestwi

h

% input arguments:

% out: a structure, the output of function arimaestos, arimaestni or
% arinamestwi

h

% output arguments:

% res: a vector containing the OLS residuals

196 OLSrres

function [recrs,recr,srecr] = 0OLSrres(out)

b

/A

% This function obtains the OLS residuals after having used function
% arimaestos, arimaestni or arimaestwi

b

% input arguments:

% out: a structure, the output of function arimaestos, arimaestni or
% arinamestwi

b

% output arguments:

yA recrs: standardized recursive residuals

149

h
b

197

function

recr: recursive residuals
srecr: covariance matrices of recursive residuals

outlr

[nrout,nind,tip,Yol= outlr(y,Y,parm,iout,infm,npr,...

x0,spl,sp2,fmarqdt,ols,aa)

h
h
o
h
o
h
h
h
b
h
h
h
h
o
h
o
h
h
h
h
h
h
h
h
h
h
h
h
h
h
b
h
h
h
h

this function performs automatic outlier detection

three types of outlier are considered:

AO: defined by a one at t=T and zeros elsewhere

TC: defined by a one at t=T followed by delta”i at t=T+i, i=1,2,...
Usually, delta=.7.

LS: defined by ones from t=T to the end.

Input arguments:

y: vector containing the data

Y: matrix containing regression variables

parm: astructure containing model information, where
seasonality

second seasonality

.s:
.S:

.p:

.ps:
.q:

.gs:
.qS:
.dr:
.ds:
.dsS:

AR or
order
order
order
order
order
order
order

.pvar: ar
.pfix: ar

iout: a
wh
.C: cr
.delta: th
.mthd:
.schr: =0
=1
infm
£

der

of the AR of order s

of the regular MA

of the MA of order s (1 at most)

of the MA of order S (1 at most)

of regular differencing

of differencing of order s

of differencing of order S
ray containing the indices of variable parameters
ray containing the indices of fixed parameters
structure containing information for outlier detection,
ere

itical value for outlier detection

e value for delta in TC outliers

method to compute ARMA parameter estimates (O Hannan Rissanen,

1 Max. Lik.)
outliers of type AO and TC are considered (default)
outliers of type A0, TC and LS are considered
structure containing function names and optimization
options
a function to evaluate the vector ff of individual functions

150

h
h
h
h
h

h
h
h
h
h
h
o
h
o
h
h
h
h
h
b
h
h
h
h
o
h
h
h
h
h
h
h

h

such that ff’*ff is minimized

.tr >0 x is passed from marqdt to f but not passed from f to
marqdt
=0 x is passed from marqdt to f and passed from f to marqdt
.tol: a parameter used for stopping
.jac: =1 evaluation of jacobian and gradient at the solution is
performed
=0 no evaluation of jacobian and gradient at the solution is
performed
.maxit: maximum number of iterations
.nu0: initial value of the nu parameter
.prt: =1 printing of results
=0 no printing of results
.chb: = 1 compute the beta estimate and its MSE
do not compute the beta estimate and its MSE
.inc: = 0, the initial states in the filter equations to obtain
the filtered variables are equal to zero (not
estimated)
= 1, the initial states in the filter equations are
estimated

x0: initial parameter vector

npr: number of forecasts

Note that A0 and LS can be obtained by setting delta=1 and schr=2
spl,sp2: the outliers are searched in the time span (spl,sp2)
fmarqdt: a parameter for the estimation method

1 Levenberg-Marquardt method

0 Lsgnonlin (Matlab)

Output arguments:

nrout: number of outliers detected

nind : index numbers of detected outliers

tip : array containing the type of the detectec outliers

Yo: new desing matrix containing the detected outliers in the last
columns. That is, Yo=[Y X], where X contains the outlier
variables.

198 pafi

function fi=pafi(r)

h
b
2

this function transforms the partial autocorrelation coefficients
of an autoregressive model 1+phi_1%*z+...+phi_p*z"p into the

151

% model parameters
% input : r, a 1 x p vector
% output: fi, a 1 x p vector

199 param2armaxe

function str = param2armaxe(str)
% PURPOSE: given a vector of Hannan-Rissanen estimates, it computes the
% VARMAX echelon form

e
% USAGE: str = param2armaxe(str)

% where: str = a structure containing the vector of second step
yA estimates
S —

% RETURNS: str = a structure containing the previous structure plus

% the matrices of the VARMAX echelon form
S

200 param2mdp

function [yd,Dr,Ds,ferror]=param2mdp(y,DA,nr,ns,seas)

yA

b

% This function obtains the series
% yd_t = D(B)*y_t,

% where D(z)=Dr(z)#*Ds(z) is a polynomial matrix compatible

% with y_t and B is the backshift operator, By_t = y_{t-1}. The
% polynomial matrix D is given in condensed form in matrix DA.
h

% Input arguments:

b y: an m X s matrix

% DA= matrix of the form [DAr Indxr DAs Indxs], where DAr and
b DAs are the parameterizations of the regular and seasonal
% differencing matrix polynomials, and Indxr and Indxs are
b two index vectors to identify the 1.i. rows of DAr and

b DAs.

pA nr= number of regular unit roots

A ns= number of seasonal unit roots

pA seas: seasonality

% Output arguments:

b yd: the series D(B)*y_t

b Dr: regular differencing matrix polynomial

152

yA Ds: seasonal differencing matrix polynomial
b ferror: a flag for erros

201 param?2sse

function str = param2sse(str)

% PURPOSE: given a vector of Hannan-Rissanen estimates, it computes the
% state space echelon form

Y

% USAGE: str = param2sse(str)

% where: str = a structure containing the vector of second step
% estimates

e

% RETURNS: str = a structure containing the previous structure plus

b the matrices of the VARMAX echelon form

e

202 parambeta

function [DA, ferror]=parambeta(beta)

/A

% Given an (s x r) matrix of ramnk r, this function parameterizes beta by
% finding r linearly independent rows. It returns an (s x r+l1) matrix of
% the form [beta Idx], where beta is parameterized and Idx is an index

% such that Idx(i) = O if the i-th row is linearly independent and

% Idx(i) = 1 if the i-th row is linearly dependent.

b

% Inputs : betap : an (s x r) matrix

% Output : DA : an (s x r+1) matrix such that DA=[beta Idx]

203 parar

function y=parar(x,p,ps,q,9s,qS)

%otk ok ook ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk s s s ok sk sk sk ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk k kokokokokok ko ok
% Given the polynomials of a multiplicative ARMA model such that their

% coefficients have been transformed into parcor coefficients, this

% function converts parcor coefficients back into AR coefficients

h

% INPUTS:
b x : coefficients of the polynomials of a multiplicative ARMA
yA model p, ps, g, gs, gS : integers specifying where the

153

% coefficients of the ARMA model are in x.

yA More specifically,

b p : first p are AR coefficients

% ps : starting with the (p+1)th coefficient, the next ps are AR c.
b q : starting with the (p+1+ps+1)th coefficient, the next q are
h MA c.

% gs : starting with the (p+l+ps+1+qg+1)th coefficient,

yA the next gs are MA c.

pA gS : starting with the (p+1+ps+l+q+l+gs+1)th coefficient,

pA the next gS are MA c.

o

% OUTPUTS:

pA y : coefficients of all the polynomials of the
pA ARMA model

204 parzen

function [w, m] = parzen(n, m)

h

yA This function computes the weights for the
b Parzen window

h

b INPUTS:

b n : lentgh of the series

b m : window lag size

h

b OUTPUTS:

b w : weights of the Parzen window
YA m : window lag size;

205 pecheform

function [phie,thetae,kro,ierror] = pecheform(phi,theta,kro)

b

% This function computes the echelon form corresponding to a transfer
% function Psi(z)=phi~{-1}(z)*theta(z) and, possibly, the Kronecker

% indices. It is assumed that phi(z) is square and that phi(0) is

% nonsingular. Polynomial matrix theta(z) can be nonsquare and,

% therefore, theta(0) is not assumed to be the identity matrix.
N ——

% USAGE: [phie,thetae,kro,ierror] = pecheform(phi,theta,kro)

% where: phi = a k x k polynomial matrix with phi(0) nonsingular

154

h
h
h
o
h
h
h
h
h
b
h
h
o
h
o

theta = a k x m polynomial matrix

kro = a 1 x k vector containing the Kronecker indices
RETURNS :

phie = the AR echelon polynomial matrix

thetae = the MA echelon polynomial matrix

kro = a 1 x k vector containing the Kronecker indices

ierror =1, dimension mismatch in phi and theta
=0, there are no errors on input
If kro is not input, the function uses functions housref and nullref
on the augmented Sylvester matrices constructed with phi and theta to
compute the Kronecker indices. If kro is input, a system of linear
equations based on an appropriate augmented Sylvester matrix is
solved.

206 periodg

function [f,frql = periodg(x,win)

b
h
b
h
h
o
h
o
h
h
h
h
h

This function computes the (smoothed) periodogram

INPUTS:
X : series
win : window used for smoothing the periodogram;
= 0 : no smoothing is performed

= 1 : Blackman-Tukey window
= 2 : Parzen window
= 3 : Tukey-Hanning window
OUTPUTS:
f : (smoothed) periodogram
frq : array containing the frequencies

207 permat

f
o
h
h
b
b
h

unction [B] = permat(A, n, m);
This function permutes the rows of a matrix A (that has nm rows) as
if we premultiplied A by Knm, the permutation matrix of parameters n
and m

permutation matrix: Pxvec(A) = vec(A’)

155

208 pfctsusm

function pfctsusm(out)
Kok sk ok ok ko sk ok ok ok sk ok ok ok ok ook sk K ook kK ok sk ok sk ok ok sk ok ok sk ok ok sk K ok sk K ok ok Kook kK o

% This function plots forecasts

T

o INPUT:

yA out : structure with the following fields:

yA .yor : original time series

yA .y : time series used in computation of forecasts

pA .ny : length of y

b .pry : forecasts of y

% .spry : standard errors of pry

/A .opry : forecasts of y in the original scale (if lam = 0)
yA .ospry : standard errors of opry

pA .npr : number of forecasts

pA .cw : critical value of the standard normal distribution used in
/A computation of confidence bounds

pA .tname : name of the time series

% .s : frequency of the data

yA .lam = 0 : compute logs of yor

h

1 : do not compute logs of yor

209 pleft2rightcmfd

function [phir,thetar,kro,ierror] = pleft2rightcmfd(phi,theta,np,kro)

h

% This function computes a right coprime MFD given a left MFD. That is,
% given phi~{-1}(z)*theta(z), a right coprime MFD is computed such

% that thetar(z)*phir~{-1}(z) = phi~{-1}(z)*theta(z).

%» It is assumed that phi(z) is square and that phi(0) is nonsingular.

% Polynomial matrix theta(z) can be nonsquare and, therefore, theta(0)
% is not assumed to be the identity matrix.
S —

% USAGE: [phir,thetar,kro,ierror] = pleft2rightcmfd(phi,theta,np,kro)

% where: phi = a k x k polynomial matrix with phi(0) nonsingular
pA theta = a k x m polynomial matrix

yA kro = a 1 x k vector containing the Kronecker indices
yA np = un upper bound for the Kronecker indices

e
% RETURNS:
b phir = the AR echelon polynomial matrix

156

yA thetar = the MA echelon polynomial matrix

yA kro = a 1 x k vector containing the Kronecker indices
b ierror =1, dimension mismatch in phi and theta
pA =0, there are no errors on input

e
% If kro is not input, the function uses functions housref and nullref
% on the augmented Sylvester matrices constructed with phi and theta to
% compute the Kronecker indices. If kro is input, a system of linear

% equations based on an appropriate augmented Sylvester matrix is

% solved.

210 plotres

function plotres(y,Y,g,yor,datei,cw,fname,gflag,nrout,Youtg,nreg,Yrg,infr,s,lam)
%k ke ot ot ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok sk ok ok sk ok sk sk sk o o o ok ok ok sk sk ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk ok ke ke ke ok sk sk ok ok ok ok

% This function plots original series, residuals, outliers, regression

% variables, residual histogram, and correlograms of residuals and

% squared residuals.

b

T INPUTS:

b y : data vector

b Y : matrix with regression variables

pA g : vector with regression coeffients

b yor : original time series

yA datei : calendar structure

A cw : critical value of the standard normal distribution to
yA compute confidence bounds

yA fname : series label appearing in the legend

yA gflag = 1 : pause between figures

% 0 : no pause

yA nrout = 0 : do not produce graph of outlier effects

% > 0 : produce graph for each outlier effect

b Youtg : matrix with outlier effects

yA nreg = 0 : do not produce graph for the effects of regression
A variables other than outliers

yA > 0 : produce graph for the effects of each regression
A variable other than outlier

yA Yrg : matrix with effects of regression variables other than
b outliers

yA infr : residual structure (output of rescomp)

pA s : frequency of the data

yA lam = 0 : compute logs of the original series

157

h = 1 : do not compute logs

211 plotspcd

function plotspcd(outa)

h

% function to plot the spectra of the canonical decomposition of an
% ARIMA model previously identified with function arimaestos.

h

% phi(B)*phi_s(B"s)*(delta*delta_s*y_t -mu) =

% th(B)*th_s(B"s)*a_t

212 pmatmul

function [C, ierror] = pmatmul(A,B)
h
% This function computes the product of the polynomial matrices A and B

h

213 pmattrans

function At = pmattrans (A)
h
% This function computes the transpose of a polynomial matrix A

% ___
% USAGE: At = ptransmat (A)

% where: A = a polynomial matrix not necessarily square
e

% RETURNS:

% At = the transpose of A
S

214 pmattrian

function [T,U,ierrpmatri] = pmattrian(A, full, iHerm)

% This function computes T, a lower triangular form of a full column

% rank polinomial matrix A. U is a unimodular matrix such that AU = T
% and rk = rank(A) can be used on output to check if A really had full
% rank. If it had not, on output T and U are empty. See Henrion and

% Sebek (1999) Reliable Numerical Methods for Polynomial Matrix

158

% Triangularization, IEEE Trans. Aut. Control 44-3 pp. 497-508
% Author Felix Aparicio-Perez, Instituto Nacional de Estadistica, Spain

215 pmmulbf

function X=pmmulbf (A,B);

% multiplies matrix pol. in z (AO+Alxz+...)by matrix pol.in z"{-1}
% (BO+Blxz {-1}+...)’

% in output:X(1) is the coeff. of z"{-1}(max)

216 pmspectfac

function [Omega,Theta,ierror,iter,normdif]=pmspectfac(Lp,niter,lim)
h

% This function computes the spectral factorization

% Lp(z,z"{-1})=Theta(z) *Omega*Theta’ (z"{-1}),

% where Theta(0)=I.

%This is achieved by solving the similar problem

% Lp(z,z"{-1})=phi(z)*phi’ (z~{-1}),

% where phi is a polynomial matrix,

% phi(z)=phi_O+phi_1%z+ ... + phi_p*z~p,

% such that phi_O is a lower triangular matrix, Lp is a symmetric
% Laurent polynomial matrix of the form

% Lp(z,z"{-1})= L’ _pz"{-p}+..... +L° _1z"{-1}+L_O0+L_1z+...L_pz~p,
% and L_O is a symmetric, positive definite, matrix.

% The solution is found using Newton’s method, iterating in the

% symmetric polynomial matrix equation

yA X(z)phi’ (z"{-1}) + phi(z2)X’(z"{-1}) = 2#Lp(z,z"{-1}),

/» where p=degree(phi(z))= degree(X(z)), and the starting value for phi
% is phi_0=C*C’, where C is a lower triangular matrix such that

% CxC’=L_0, and phi_i=0, i=1,...,p.

h

% Input: Lp = [n,n,p+l] matrix containing L_O+L_1z+...L_pz"p

yA niter = maximum number of iterations (default 10)

pA lim = coefficient error limit for convergence

% max (|phi(z)*phi’ (z"{-1})-Lpl) < lim (default 1e-6)
% Output: Theta = [n,n,p] matrix containing the solution Theta(z)
A without Theta(0)=I

pA Omega = n x n symmetric, positive definite

b ierror = 0,1 a flag for errors in dimensions

yA iter = number of needed iterations

/A normdif = norm of the difference upon convergence

159

217 poldiv

function y=poldiv(b,a,n)
%psi(B)=psiO+psil*B+...=(b0+b1*B+...)/(a0+al*B+...)
%dimension of psi=n+1

218 postmulW

function [C,ierror] = postmulW(A,k)

o

% This function computes the product of the matrix A by W
b

219 pr2ecf

function [Lambda,alpha,betap,th,Th,L,ferror] = pr2ecf(xv,xf,DA,str)

% PURPOSE: given a structure containing information about a VARMA model
% in error correction form, it obtains the model
e

% USAGE: [Lambda,alpha,betap,th,Th,L,ferror] = pr2ecf(xv,xf,DA,str)

% where:

yA XV = a vector containing the parameters to be estimated
yA xf = a vector containing the fixed parameters

% be estimated, =0, not

pA DA = the matrix containing the parameterization of the
pA differencing polynomial

pA str = a structure containing the initial model

/A information
.
e

% RETURNS:

b Lambda = a polynomial matrix of degree p-1, where p is the
yA degree of the overall AR matrix polynomial

pA alpha = an (s x r) matrix, where s is series dimension

yA and r is the cointegration rank

pA betap = an (r x s) matrix

yA th = the regular MA matrix polynomial

yA Phi = the seasonal AR matrix polynomial

b Th = the seasonal MA matrix polynomial

yA L = the Cholesky factor of the innovations covariance
A matrix

yA ferror = flag for errors

160

220

function [X,Z,G,W,T,H,ins,i,ferror] = pr2usm(xx,xf,str)
% PURPOSE: given a structure containing information about a univariate
% structural model, it passes the parameters to the state space form

h
h
o
h
b
h
h
hh
h
h
b
h
b
h
h
o
h
h
h
h
h
b
o
h
o
h
h
h
h
h
h
h
h
h
h

pr2usm

USAGE: [X,Z,G,W,T,H,ins,i,ferror] = pr2usm(xx,xf,str)

where:

RETURNS:

XX = a vector containing the estimated parameters

xf = a vector containing the fixed parameters

str = a structure containing the initial model
information

updated matrices and initial conditions of the state space
form of a univariate structural model:

y_t = X_t*beta + Z_t*alpha_t + G_t*epsilon_t
alpha_{t+1}= W_t*beta + T_t*alpha_t + H_t*epsilon_t

where epsilon_t is (0,sigma”2I),
with initial state
alpha_1= c + W_Oxbeta + a_1l + A_1lxdelta

where ¢ is (0,Omega) and delta is (0,kI) (diffuse)

More specifically:

X : (n x nbeta) matrix containing the X_t matrices;

(1 x nbeta) if it is time invariant;

can be []

(n x nalpha) matrix containing the Z_t matrices;
(1 x nalpha) matrix if it is time invariant

(n x nepsilon) matrix containing the G_t matrices;
(1 x nepsilon) matrix if it is time invariant
(n*nalpha x nbeta) matrix containing the W_t matrices;
(nalpha x nbeta) matrix if it is time invariant;
can be []

(n*nalpha x nalpha) matrix containing the T_t

EGBEE"EPES®E

matrices;

161

h
h
h

an (nalpha x nalpha) matrix if it time invariant
H : an (n*nalpha x nepsilon) matrix containing the H_t %
an (nalpha x nepsilon) if it is time invariant

yA ins : an nalpha x (cctcwO+cal+ccal) matrix containing the

h
h
h

initial
state information, according to array i below
i : a 1 x 4 array containing 4 integers, i=[cc cwO cal

yA ccall], where

yA cc = nalpha if c is not missing (0 if c missing)
yA cw0 = number of columns in W_O (0 if W_O missing)
pA cal =1 if a_1 is not missing (0 if a_1 missing)
% ccal = number of columns in A_1 (0 if A_1 missing)
yA ferror : flag for errors

% __________

221 pr2usmm

function [X,Z,G,W,T,H,ins,ii,ferror] = pr2usmm(xx,xf,str)

% PURPOSE: given a structure containing information about a univariate

% structural model, it passes the parameters to the state space form

% USAGE: [X,Z,G,W,T,H,ins,ii,ferror] = pr2usm(xx,xf,str)

% where:
yA
b
yA
b

% RETURNS:
h
h
h
o
h
b
h
h
h
b
h
h

XX = a vector containing the estimated parameters
xf = a vector containing the fixed parameters
str = a structure containing the initial model

information

updated matrices and initial conditions of the state space
form of a univariate structural model:

y_t = X_t*beta + Z_t*alpha_t + G_t*epsilon_t
alpha_{t+1}= W_t*beta + T_t*alpha_t + H_t*epsilon_t

where epsilon_t is (0,sigma”2I),
with initial state
alpha_1= c + W_Oxbeta + a_1 + A_lx*delta

where ¢ is (0,0Omega) and delta is (0,kI) (diffuse)

162

matrice:

h
h
h
h
h
h
h
h
h
h
h
b
o
h
o
h
h
h
h
h
b
h
h
o
h

h

222

More specifically:

X

ins

ferror :

: an (n x nbeta) matrix containing the X_t matrices;

(1 x nbeta) if it is time invariant;

can be []

(n x nalpha) matrix containing the Z_t matrices;
(1 x nalpha) matrix if it is time invariant

(n x nepsilon) matrix containing the G_t matrices;
(1 x nepsilon) matrix if it is time invariant
(n*nalpha x nbeta) matrix containing the W_t matrices;
(nalpha x nbeta) matrix if it is time invariant;
can be []

(n*nalpha x nalpha) matrix containing the T_t
matrices;

an (nalpha x nalpha) matrix if it time invariant

ESBE"EPES®

: an (n*nalpha x nepsilon) matrix containing the H_t % matrice

an (nalpha x nepsilon) if it is time invariant

: an nalpha x (cc+cwO+cal+ccal) matrix containing the

initial
state information, according to array i below

:a 1 x 4 array containing 4 integers, i=[cc cw0O cal

ccal], where

cc = nalpha if c is not missing (0 if c missing)
cw0 = number of columns in W_O0 (0 if W_O missing)
cal =1 if a_1 is not missing (0 if a_1 missing)

ccal = number of columns in A_1 (0 if A_1 missing)
flag for errors

pr2varmapqPQ

function [phi,th,Phi,Th,L,ferror] = pr2varmapqPQ(xv,xf,str)
% PURPOSE: given a structure containing information about a VARMA
% model, it passes the parameters to the state space form.

o
h
h
h
b
h
b
h
h

USAGE: [phi,th,Phi,Th,L,ferror] = pr2varmapqPQ(xv,xf,str)

where:
XV
xf

str

= a vector containing the parameters to be estimated
a vector containing the fixed parameters

be estimated, =0, not

a structure containing the initial model
information

163

% ___

% RETURNS:

b phi = the regular AR matrix polynomial

% th = the regular MA matrix polynomial

b Phi = the seasonal AR matrix polynomial

yA Th = the seasonal MA matrix polynomial

b L = the Cholesky factor of the innovations covariance
h matrix

yA ferror = flag for errors

Y

223 pr2varmapqPQd

function [yd,xvv,xff,DA,Dr,Ds,ferror] = pr2varmapqPQd(y,xv,xf,str)

% PURPOSE: given a structure containing information about a VARMA model
% with unit roots, it passes the parameters to the state space form.

e

% USAGE: [yd,xvv,xff,DA,Dr,Ds,ferror] = pr2varmapqPQd(y,xv,xf,str)

% where: y = an (n x neqs) matrix containing the data

yA XV = a vector containing the parameters to be estimated
yA xf = a vector containing the fixed parameters

% be estimated, =0, not

% str = a structure containing the initial model

yA information

e

Y

% where: yd = the differenced series

/A XVV = the variable paramaters for VARMA model

yA xff = the fixed paramaters for VARMA model

b DA = the matrix containing the parameterization of the
yA differencing polynomial

yA Dr = the regular ’differencing’ polynomial

yA Ds = the seasonal ’differencing’ polynomial (not used)
yA ferror = flag for errors

Y

224 predt

function [pr,spr]=predt(n,npr,str,Y,Z,T,H,AA,Signa,g,M)

h

% this function computes npr forecasts of an ARIMA model and their mse
% using the Kalman filter. The state space model is

164

h
h
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
b
h
h
o
h
o
h
h
h
h
h

x_{t}
y_{t}

T x_{t-1} + H a_{t}
Y_{t} \beta + Z x_{t},

where he initial state vector is
x_{d+1} = Ax\delta + \Xixc,

See Gomez and Maravall (1994), "Estimation,

Prediction and Interpolation for Nonstationary Series with the
Kalman Filter", Journal of the American Statistical Association,
89, 611-624. The filter is initialized at time t = d+1, where d is
the differencing degree, and the first d observations are stacked
to form the \delta vector.

Input arguments:

n : the series length

npr: the number of forecasts

str: estimated standard deviation of the residuals
Y: matrix containing regression variables

Z: the Z matrix

T: the T matrix

H: the H matrix

g: array containing the regression estimates

M: matrix containing the mse of the regression estimates

AA: the estimated augmented state vector at the end of filtering
Sigma: the Mse of A at the end of filtering

Output arguments:
pr : array containing the forecasts
spr: array containing the ms

225 preres

function [Z,T,H,A,Sigmal] = preres(x,s,pr,ps,qr,qs)

b
b
h
b
h
h
h

This function computes the system matrices corresponding to a
stationary ARMA model. The state space model is

x_{t}
y_{t}

T x_{t-1} + H a_{t}
Z x_{t},

165

h
h
h
h
h
h
h
h
h
h
h
h

h
o
h
h
h
h
h
b
h
h
o
h
h
b
h

where Var(x_{1}) = Sigma. Given an ARIMA model,the initial state
vector is

x_{d+1} = Ax\delta + \Xixc,

and Var(c) = Sigma. See Gomez and Maravall (1994), "Estimation,
Prediction and Interpolation for Nonstationary Series with the
Kalman Filter", Journal of the American Statistical Association,
89, 611-624. The filter is initialized at time t = d+1, where d is
the differencing degree, and the first d observations are stacked
to form the \delta vector. In this case, because d = 0, x_1 = c;

INPUTS:
X: array containing model parameters
s: number of seasons
pr: AR order
ps: order of the AR of order s
qr: order of the regular MA
gs: order of the MA of order s

OUTPUTS:

Z: the Z matrix

T: the T matrix

H: the H matrix

A: the empty matrix because the series is stationary
Sigma: the Sigma matrix

226 pright2leftcmfd

function [phie,thetae,kro,ierror] = pright2leftcmfd(phir,thetar,np,kro)

h
o
h
h
h
h
h
h
h
h

This function computes a left coprime MFD given a right MFD. That is,
given thetar(z)*phir~{-1}(z), a left coprime MFD is computed such
that phie”{-1}(z)*thetae(z) = thetar(z)*phir~{-1}(z).

It is assumed that phir(z) is square and that phir(0) is nonsingular.
Polynomial matrix thetar(z) can be nonsquare and, therefore,
thetar(0) is not assumed to be the identity matrix.

USAGE: [phie,thetae,kro,ierror] = pright2leftcmfd(phir,thetar,np,kro)
where: phir = a k x k polynomial matrix with phir(0) nonsingular

166

T

ot

=

®

ot

)

H
|

= a k x m polynomial matrix

b np un upper bound for the Kronecker indices

b kro a 1 x k vector containing the Kronecker indices
e

% RETURNS:

yA phie = the AR echelon polynomial matrix

/A thetae = the MA echelon polynomial matrix

yA kro = a 1 x k vector containing the Kronecker indices
pA ierror =1, dimension mismatch in phir and thetar

yA =0, there are no errors on input

e
% If kro is not input, the function uses functions housref and nullref

% on the augmented Sylvester matrices constructed with phir and thetar

% to compute the Kronecker indices. If kro is input, a system of linear
% equations based on an appropriate augmented Sylvester matrix is

% solved.

227 printres

function printres(fid,infr)
ok ok ok ok ok ok o ok K ok K ok o ok K ok K ok K ok K ok Kok KoK KKK KKK KKK KKK KKK K KKK KKK KKK o K

% This function prints test results based on residuals

h

% INPUTS:
yA fid : file identifier, needed for writing
b infr : residuals structure (output of rescomp)

228 printusmer

function printusmer(fid,datei,tname,yor,y,ny,lam,modescr,result,nreg,nbeta)
9k ke ok sk sk ok sk ok ok sk ok sk 3 ok sk sk ok sk ok ok ok sk 3 ok sk sk ok s ok ok ok sk 3k ok sk sk ok sk ok ok ok ok s ok sk ok ok ok ok s ok K sk ok sk sk ok ok ok ok ok sk ok ok

% This function prints the estimation results of a univariate structural

% model

b

b INPUTS:

yA fid : file identifier, needed for writing the output into text
b file

A datei : calendar structure

yA tname : name of the series (string variable)

/A yor : original time series

yA y : time series used in the estimation etc.

b ny : length of y

167

yA lam = 0 : compute logs of y

pA 1 : do not compute logs

% modescr : structure containing model information (output of suusm)

% result : structure with the estimation results (output of usmestim)

b nreg : number of regression variables in the observation equation;
yA nbeta : number of regression coefficients in the state space model;
b number of columns of the matrices X and W

T

% Note: nreg corresponds to the number of nonzero columns of X and

% nbeta to the number of the columns of X and W, where

pA X is an (n x nbeta) matrix containing the X_t matrices;

% an(l x nbeta) matrix if it is time invariant; it can be []

pA W is an (n*nalpha x nbeta) matrix containing the W_t matrices;
b an (nalpha x nbeta) matrix if it is time invariant; it can be
b (]

b and

yA X_t and W_t are matrices of the state space model:

A

yA y_t = X_txbeta + Z_t*alpha_t + G_t*epsilon_t

yA alpha_{t+1}= W_t*beta + T_t*alpha_t + H_t*epsilon_t

h

% where epsilon_t is (0,sigma”2I),

h

yA with initial state

b

% alpha_1= c + W_Oxbeta + a_1l + A_lxdelta

A

% where ¢ is (0,Omega) and delta is (0,kI) (diffuse)

229 printusmerm

function printusmerm(fid,datei,tname,yor,y,ny,lam,modescr,result,nreg,nbeta)
%ottt ko ofe ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ko okok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ke kokokokoko ook o

% This function prints the estimation results of a univariate structural

% model with complex seasonal patterns

T

b INPUTS:

yA fid : file identifier, needed for writing the output into text
o file

yA datei : calendar structure

% tname : name of the series (string variable)

yA yor : original time series

168

h
h
h
o
h
h

h
h
h
h
h
o
h
h
h
h
h
h
h
h
h
h
o
h
o
h
h
h
h

y : time series used in the estimation etc.
ny : length of y
lam = 0 : compute logs of y
=1 : do not compute logs

modescr : structure containing model information (output of suusm)

result : structure with the estimation results (output of usmestim)
nreg : number of regression variables in the observation equation;
nbeta : number of regression coefficients in the state space model;

Note:

230

function prmodix(fid,s,p,dr,q,ps,ds,qs,S,dS,qS,lam,flagm)

T

number of columns of the matrices X and W

nreg corresponds to the number of nonzero columns of X and

nbeta to the number of the columns of X and W, where

X is an (n x nbeta) matrix containing the X_t matrices;
an(l x nbeta) matrix if it is time invariant; it can be []

W is an (n*nalpha x nbeta) matrix containing the W_t matrices;
an (nalpha x nbeta) matrix if it is time invariant; it can be
(]

and

X_t and W_t are matrices of the state space model:

y_t = X_txbeta + Z_t*alpha_t + G_t*epsilon_t
alpha_{t+1}= W_t*beta + T_t*alpha_t + H_t*epsilon_t

where epsilon_t is (0,sigma”2I),
with initial state
alpha_1= ¢ + W_Oxbeta + a_1 + A_lxdelta

where ¢ is (0,Omega) and delta is (0,kI) (diffuse)

prmodlx

% this function prints in the file fid the ARIMA model specification of
% the form (p,dr,q) (ps,ds,qs)_s (0,dS,qS)_S, adding information as to
% whether logs have been taken and whether a mean has been included.

231

function prmod2x(fid,s,p,dr,q,ps,ds,qs,S,dS,qS,lam,flagm)

prmod2x

169

T

% this function prints in the file fid the ARIMA model specification of
% the form (p,dr,q) (ps,ds,qs)_s (0,dS,qS)_S, adding information as to
% whether logs have been taken and whether a mean has been included.

232 prmodllx

function prmodilix(fid,s,p,dr,q,ps,ds,qgs,S,dS,qS,lam,flagm)

T

% this function prints in the file fid the ARIMA model specification of
% the form (p,dr,q) (ps,ds,qs)_s (0,dS,9S)_S, adding information as to
% whether logs have been taken and whether a mean has been included.

233 prsummry

function prsummry(ii,ny,nregO,fid,fname,parm,iout)

b

% this function prints the automatic model identification summary for a
% list of ARIMA or transfer function models.

h

T INPUTS:

yA ii : an integer, corresponding to the series currently
yA handled.

yA ny : the series length

yA nregO0 : the number of original regression variables

% fid : the number of the output file

b fname : a string containing the series name

% parm: astructure containing model infomation, where
% .s: seasonality

% .p: AR order

% .ps: order of the AR of order s

% .q: order of the regular MA

% .qs: order of the MA of order s (1 at most)

% .dr: order of regular differencing

% .ds: order of differencing of order s

% .lam: = 0, logs are taken, = 1, no logs

%.flagm: = 0, no mean, = 1, mean in the model

%.trad : the estimated number of TD variables

%.leap : = 0, no leap year effect, = 1, leap year effect in the model
%.east : = 0, no Easter effect, = 1, Easter effect in the model

%.dur : duration of the Easter effect

% iout: a structure containing information for outlier detection,

170

h
h
h
o
h
h
h

where

.C: critical value for outlier detection

.delta: the value for delta in TC outliers

.mthd: method to compute ARMA parameter estimates (O Hannan Rissanen,
1 Max. Lik.)

.schr: =0 outliers of type A0 and TC are considered (default)
=1 outliers of type A0, TC and LS are considered

234 prtransfer

function [K, ierror] = prtransfer (A, B, n)

h
h
o
h
o
h
h
h
b
h
h
h
h
o
h
o

This function computes the right transfer function
K(z)=B(z)*A"{-1}(z) up to the (n-1)-th term, that is, K(0),...,K(n-1)
It is assumed that A(z) is square and that A(0) is nonsingular.
Polynomial matrix B(z) can be nonsquare and, therefore, B(0) is not
assumed to be the identity matrix.
USAGE: [K, ierror] = prtransfer (A, B, n)
where: A = a square polynomial matrix with A(O) nonsingular

B = a polynomial matrix not necessarily square

K = the first n weights of K(z)=B(z)*A~{-1}(z)
ierror =1, dimension mismatch in A and B
=0, there are no errors on input

235 prtser

function prtser(fid,fname,yor,y,ny,datei,inft,lam)

b
h
b
o
h
h
h
o
h
h
h

stk ok sk sk ok sk ok sk ok sk ok sk ksl ok sk sk sk ok sk sk sk sk ok sk ok sk sk ks sk ok sk sk ok sk sk sk sk ok sk ok sk ok o sksk sk ok ok
This function prints time series into text file

INPUTS:

fid : file identifier, needed for writing the output into text

file

fname : name of the series

yor : original time series

y : time series used in the estimation etc.

ny : number of observations

datei : calendar structure

171

yA inft : structure containing printing options

pA .fh : flag for header and years
/A .wd : format width

% .nd : number of decimal points

b .scale = 1 : scale data if necessary
yA 0 : do not scale data

b lam = 0 : compute logs of y

yA =1 : do not compute logs

236 ptransfer

function [K, ierror] = ptransfer (A, B, n)

/A

% This function computes the transfer function K(z)=A"{-1}(z)*B(z) up to
% the (n-1)-th term, that is, K(0),...,K(n-1)

% It is assumed that A(z) is square and that A(O) is nonsingular.

% Polynomial matrix B(z) can be nonsquare and, therefore, B(0) is not
% assumed to be the identity matrix.
S —

% USAGE: [K, ierror] = ptransfer (A, B, n)

% where: A = a square polynomial matrix with A(O) nonsingular

b B = a polynomial matrix not necessarily square
S —

% RETURNS:

yA K = the first n weights of K(z)
% ierror =1, dimension mismatch in A and B
% =0, there are no errors on input

% ___

237 puZma

function [th, sigma2, ierrpu2mal] = pu2ma(p)

% This function obtains the moving average part corresponding
% to a finite covariance generating function that has been

% transformed into a polynomial in the variable U=z + z"(-1)

238 qarmax2ssl

function [H,F,G,J,ierror] = qarmax2ssl(phi,theta)
pA

h
h
h
h
h
h
h
h
h
h
h
h

This function puts the armax model into Akaike’s state space form

x(t+1) = Fxx(t) + Gxu(t)

y(t) = Hxx(t) + J*u(t),
where
[0OIO
(001
F = [...
(000 e
[-bphi_r ... -bphi_
H = [TOoO . 0]

0] [Psi_1]
0] [Psi_2]
1, G=1... 1,
1] [Psi_{r-1}]
1] [Psi_r]
s J = Psi_0,

bphi_i = phi_0"{-1}*phi_i and phi~{1}(z)*theta(z) = Psi_O + Psi_1%*z

+ Psi_2*%z"2+ ..., and r max

% USAGE:

% where: phi = a matrix pol
b theta = a matrix pol
R —
% RETURNS:

% H = a k x n matrix
yA F = an n x n matrix
% G = an x m matrix
pA J =ak x mmatrix

% ierror =1, dimension mi
% =0, there are no
A —
239 qgarmax2ss2

function [H,F,G,J,ierror]

h
h
b
h
o
h
h
h
h
h
b
h
h

USAGE: [H,F,G,J,ierror]
phi a matrix pol
theta = a matrix pol

where:

{degree(phip), degree(theta)}.

[H,F,G,J,ierror] = qarmax2ss(phi,theta)

ynomial with phi(0) nonsingular
ynomial not necessarily square

smatch in phi and theta
errors on input

garmax2ss2(phi,theta)

garmax2ss (phi,theta)

ynomial with phi(0) nonsingular
ynomial not necessarily square

This function puts the armax model into a state space form

x(t+1) = F*x(t) + Gxu(t)

y(t) = Hxx(t) + J*xu(t),
where
[-bphi_1 I0
[-bphi_2 01
F= [

(~bphi_{r-1} 0 0

.. 0] [theta_1-phi_1%Psi0

. 0] [theta_2-phi_2*Psi0
1,6=1 ..
1] [theta_{r-1}-phi_{r-1}*Psi0

173

—_

yA [-bphi_r 000] [theta_r-phi_r*Psi0

% H= [phi_0"{-1} 00 0], J= Psi O,

% bphi_i = phi_i*phi_0"{-1} and phi~{-1}(z)*theta(z) = Psi_O + Psi_1%*z
b + Psi_2%z"2+ ...
S —

% RETURNS:

b H = a k x n matrix

% F = an n x n matrix

b G = an x m matrix

% J =ak xmmatrix

% ierror =1, dimension mismatch in phi and theta
yA =0, there are no errors on input

% ___

240 qgarmax2ssl2

function [H,F,G,ierror] = qgarmax2ss12(phi,theta)

h

e —

% USAGE: [H,F,G,ierror] = qarmax2ss(phi,theta)

% where: phi = a matrix polynomial with phi(0) nonsingular

b theta = a matrix polynomial not necessarily square

% This function puts the armax model into Akaike’s state space form
ho x(e+1) = FEx(t) + G*u(t)

yA y(t) = Hxx(t),

’ where

T (0ro 0] [Psi0]

h [cor 0] [Psi_1]

% F = L... 1, ¢=101... 1,

h (00 .. I [Psi_{r-2}]

b [-bphi_r ... -bphi_1] [Psi_{r-1}]

Y H = [I0O0o0],

% bphi_i = phi_0"{-1}*phi_i, phi~{1}(z)*theta(z) = Psi_0 + Psi_1xz
% + Psi_2xz"2+ ..., and r = max{degree(phip), degree(theta)+1}.

% ___
% RETURNS:

/A H = a k x n matrix

% F = an n x n matrix

b G = an x m matrix

% J =ak xmmatrix

% ierror =1, dimension mismatch in phi and theta
yA =0, there are no errors on input

174

241 qtb

function QtB=qtb(A,B,p,q)

% given the output matrix A of function jqrt containing the
% J-unitary Housholder transformations and a matrix B, this
% function computes the product of Q’*B

h

S

% USAGE: QtB=qtb(A,B,p,q)

% where: A =anmx n matrix, m >=n

b B = mb x nb matrix

b pP,q = integers such that J = diag(I_p,-I-q) is a signature
/A matrix with n=p+q

R —————————.
% RETURNS: the product Q’*B

% ___

242 rbols

function res=rbols(y,Y)
ok ok ok ok ok ok o ok ok ok ok K ok K ok ok K ok Kok Kok K ok KK KK KKK KKK KKK KKK KKK KR KR K o K

% This function computes the OLS residuals

h

% INPUTS:

b y : data vector

yA Y : matrix with regression variables
o

% OUTPUT:

b res : residuals vector

243 rescomp

function infr = rescomp(e,lag,nr,Ss,conp,sconp,Ff,ndrs,nreg)
O o o ok o o ko ok o ko ok ok ok o ok

pA This function generates a structure
b containing some information on the
% residuals

h

h INPUTS:

175

h
h
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
b
h
h
o
h
o
h
h
h
b
h
b
h
b
o
h
o
h
h
h
b
h
h

lag

nr
Ss
conp
sconp
Ff

ndrs
nreg

OUTPUT
infr
.e

.ne
.ve
.stde
.conp
.sconp

.orders

.pc
.gstat
.pval
.df
.sea
.sep

.no
. X0

.hotO

.ho
.me
.rstd
.rtval
.maxe

residuals vector

integer specifying lag up to which autocorrelations are to
be computed

number of parameters to be estimated

residual sum of squares

prediction error variance

square root of conp

the product F’*F, where F is the vector of nonlinear
functions whose sum of squares is minimized at the end of
estimation

length of the series minus the number of nonstationary
components

number of regression variables

residuals structure containing the following fields:
residuals vector

length of e

residuals variance

residuals standard deviation

residual sum of squares

square root of comnp

vector with integers specifying at which lags
autocorrelationsare to be computed; values between 1 and
lag

autocorrelations

partial autorrelations

Q-statistics based on residuals

p-values of the Q-statistics based on residuals

degrees of freedom for the (Q-statictics based on residuals
standard errors of autocorrelations

standard error of partial correlations;

value equal to 1/sqrt(ne)

bins of the residuals histogram

vector of cut points where observations counted in bin(i)
are cutpnt(i-1) < y <= cutpnt(i)

list of residuals greater than 3.25 standard deviations
from the median

list of the values of residuals greater than 3.25

: mean of e

standard deviation of the mean of e
t-value of the mean of e

: maximum value of e

176

yA .mde : median value of e

% .mine : minimum value of e

b .skew : skewness

% .kurt : kurtosis

b .bst : Bowman-Shenton normality statistic

yA .pnt : p-value of the Bowman-Shenton statistic

pA .tsk : p-value of skewness

yA .tkr : p-value of kurtosis

yA .dw : Durbin-Watson statistic

yA .tdw : t-value of the Durbin-Watson statistic

pA .ptdw : p-value of the Durbin-Watson statistic

yA .n0 : number of residuals lower than the median

yA .nl : number of residuals higher than the median

b .nr : number of runs on residuals

% .Tval : t-value of the number of runs on residuals

b .rs : autocorrelations of squared residuals

yA .pcs : partial correlations of squared residuals

% .gstats : Q-statistics based on squared residuals

yA .pvals : p-values of the (-statistics based on squared residuals
yA .dfs : degrees of freedom for the (Q-statistics based on squared
yA residuals

% .seas : standard errors associated with squared residuals

yA .h : closest integer to ne/3 needed in the computation of H;
pA degrees of freedom of the F-distribution

b .H : heteroskedasticity statistic

% .pH : p-value of the heteroskedasticity statistic

b .aic : Akaike information criterion

yA .bic : Bayes information criterion

yA .mser : mean squared error of residuals

yA .stder : standard error of residuals

244 residual2x

function [F,e,g,M,A,P,matsis] = residual2x(x,y,Y,s,S,dr,ds,dS,pr,ps,qr,qs,qsS)
yA
/A

A This function evaluates the residuals for

yA the nonlinear minimization of the sum of

b squares of an ARIMA model with two possible seasonalities
h

b INPUTS:

yA X: an array containing model parameters

177

h
h
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
b

245

y: an array containing the input series
Y: a matrix containing regression variables
S: seasonality
S: second seasonality
p: AR order
ps: order of the AR of order s
q: order of the regular MA
gs: order of the MA of order s (1 at most)
gS: order of the MA of order S (1 at most)
dr: order of regular differencing
ds: order of differencing of order s
dS: order of differencing of order S
OUTPUTS:
F: residual vector, whose sum of squares will be minimized
e: residual vector for inference
g: array containing the regression estimates
M: matrix containing the mse of the regression estimates
A: the estimated augmented state vector at the end of filtering
P: the Mse of A at the end of filtering
matsis: a structure containing the system matrices
residual3

function [F,e] = residual3(x,y,Y,s,pr,ps,qr,qs)

h
h
h
b
h
h
h
h
o
h
h
h
h
/.
/.
/.

This function evaluates the residuals for
the nonlinear minimization of the sum of
squares of an ARMA model using the CKMS recursions

Input arguments:

X: array containing model parameters

y: vector containing the data

Y: matrix containing regression variables
s: number of seasons

pr: AR order

ps: order of the AR of order s

gr: order of the regular MA

gs: order of the MA of order s

% Output arguments:

178

% F: residual vector, whose sum of squares will be minimized
% e: residual vector for inference

246 restrcmodel

function str = restrcmodel(s,m,seas,ordersr,orderss)
% PURPOSE: given the regular and seasonal orders of a VARMAX(p,q,r)

% (P,Q,R)_seas model, this function creates a structure

yA containing the polynomial and state space forms of the model
yA with NaNs for the parameters to be estimated and zero

yA otherwise.
e —

% USAGE: str = restrcmodel(s,m,seas,ordersr,orderss)

% where: s = an integer, the dimension of the output y_t

/A m = an integer, the dimension of the input =x_t

% seas = seasonality

b ordersr = a 1 x 3 array containing the regular VARMAX orders
pA orderss = a 1 x 3 array containing the seasonal VARMAX

b orders
o

% RETURNS: str, a structure containing model information. The fields of
yA str are the same than those in the structure returned by

% function matechelon, but with the zero restrictions of the
yA VARMAX model imposed. The VARMAX model is assumed to follow
pA an VARMAX model in echelon form with all Kronecker indices

% equal to max(p,q,r) + seas*max(P,Q,R) and with the zero

% restrictions imposed.
S

247 rootsarma

function z=rootsarma(x,parm)

2

% given an ARMA model, this function computes a matrix containing the
% roots of the AR and MA polynomials, their arguments and their periods.
b

% Input arguments:

h x : array containing model parameters

% parm : a structure where

% .s: seasonality

% .S: second seasonality

% .p: AR order

179

% .ps: order of the AR of order s

% .q: order of the regular MA

% .qs: order of the MA of order s (1 at most)

% .9S: order of the MA of order S (1 at most)

% .dr: order of regular differencing

% .ds: order of differencing of order s

% .dS: order of differencing of order S

% .pvar: array containing the indices of variable parameters
% .pfix: array containing the indices of fixed parameters

% .ninput: number of inputs

% .delay: array with the delays of the input filters

% .ma: array with the ma parameters of the input filters

% .ar: array with the ar parameters of the input filters

h

% Output arguments:

% z: an array with four columns containing the real and imaginary parts
% of the roots, their arguments and their periods

248 rpplot

function rpplot(r,p,sea,sep,c,fname)

% ke ke sk sk sk sk sk sk sk sk sk ok ok oK oK oK oK ok ok ok ok ok ok ok ok s o o o o o ok sk sk sk sk sk sk ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o o ok ok sk sk ok ok ok ok
% This function creates plots of sample autocorrelations and sample

% partial correlations

h

pA INPUTS:

% r : autocorrelations

b p : partial autocorrelations

% sea : standard errors of autocorrelations

b sep : standard error of partial correlations

% c : critical value of the standard normal distribution
% fname : label used in the legend

249 runcom

function [nO,nl,nr,Tval]l = runcom(X,N,Xmed)

%t ke ot ok ook ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok sk sk o ok ok ok ok ok ok ok ok sk ko ok ok ok ok sk ok ok ok ok o
%This function computes the elements of a test of randomness based on

% runs.

h

% INPUTS:

yA X : data vector

180

yA N : length of X
A Xmed : median of X
pA

% OUTPUTS:

b n0 : number of values of X smaller than Xmed (-)

yA nl : number of values of X grater or equal to Xmed (+)
% nr : total number of runs, (-) and (+).

yA Tval : approximate t-value of nr

250 sacspacdif

function [cOs,cvs,rs,fis,pcs] = sacspacdif(y,tname,dr,ds,freq,lag,cw,fplot)
%ok kot ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk s sk sk sk sk sk ko ok okokokok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk k kokokokokok ook ok

% This function outputs cvOs, cvs, rs, fis and pcs described below.

% In addition, it optionally plots the series before and after

% differencing, as well as the sample autocorrelations and the sample

% partial correlations of the differenced series.

T

b INPUTS

yA y : series

b tname : name of the series

yA dr : number of regular differences

yA ds : number of seasonal differences

yA freq : frequency of the data

yA lag : number of lags up to which cvs,rs,fis,pcs of the

b differenced y are computed

% cw : critical value of the standard normal distribution
b fplot : =1 plot series (default), =0 do not plot series

T
% OUTPUTS

yA cOs : sample variance of differenced y

A cvs : sample autocovariances of differenced y

yA rs : sample autocorrelations of differenced y

pA fis : an (1 x lag) vector containing the AR(lag) polynomial
yA pcs : sample partial correlations of differenced y

251 sarimac

function x=sarimac(p,ps,q,qs,phir,phis,thr,ths)
% 4 ke ke ot ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok sk ok ok sk sk sk s o o o o ok sk sk sk sk ok s ok ok ok ok sk sk sk ok ok ok ok kK
% Auxiliary function called in arimasimul_d.m to set the ARIMA coefficients

h

181

% INPUTS:

yA p: AR order

b ps: order of the AR of order s

yA q: order of the regular MA

yA gs: order of the MA of order s (1 at most)

yA phir : an array containing the regular AR polynomial
/A phis : an array containing the seasonal AR polynomial
yA thr : an array containing the regular MA polynomial
pA thr : an array containing the seasonal MA polynomial

T
% OQUTPUTS:
yA X: an array containing the ARIMA parameter values

252 scakff

function [KKP,PT,hd,Md,initf,recrs,recr,srecr]=scakff(y,X,Z,G,W,T,H,ins,i)
pA
yA

pA This function applies the augmented Kalman filter and smoother
yA to the series y corresponding to the model

b

b y_t = X_t*beta + Z_t*alpha_t + G_t*epsilon_t

% alpha_{t+1}= W_t*beta + T_t*alpha_t + H_txepsilon_t

A

% where epsilon_t is (0,sigma”2I),

A

yA with initial state

b

yA alpha_1= c + W_Ox*beta + a_1 + A_1xdelta

b

% where ¢ is (0,Omega) and delta is (0,kI) (diffuse). A single
pA collapse is applied to get rid of the diffuse component.

b

% Input parameters:

b y: an (n x p) matrix of observations;

yA X : an (n*p x nbeta) matrix containing the X_t matrices;
% a (p x nbeta) if it is time invariant;

pA it can be []

pA y/ : an (n*p x nalpha) matrix containing the Z_t matrices;
yA a (p x nalpha) matrix if it is time invariant

pA G : an (n*p x nepsilon) matrix containing the G_t matrices;
% a (p x nepsilon) matrix if it is time invariant

182

% W : an (n*nalpha x nbeta) matrix containing the W_t
pA matrices;

b an (nalpha x nbeta) matrix if it is time

% invariant; it can be []

b T : an (n*nalpha x nalpha) matrix containing the T_t

yA matrices;

b an (nalpha x nalpha) matrix if it time invariant

yA H : an (n*nalpha x nepsilon) matrix containing the H_t
yA matrices;

yA an (nalpha x nepsilon) if it is time invariant

pA ins: an nalpha x (cc+cwO+cal+ccal) matrix containing the
yA initial state information, according to array i below
pA i :a 1 x 4 array containing 4 integers, i=[cc cw0 cal
% ccall], where

pA cc = nalpha if ¢ is not missing (0 if c missing)

b cw0 = number of columns in W_O0 (0 if W_O missing)

yA cal =1 if a_1 is not missing (0 if a_1 missing)

b ccal = number of columns in A_1 (0 if A_1 missing)

h

b

yA Output parameters:

% KKP : an (n x nalpha) matrix containing the estimated x_{tlt}
% PT : an (n*nalpha x nalpha) matrix containing the

b Mse of x_{tl|t}

b hd : the beta estimate

% Md : the Mse of hd

b initf: flag to indicate when regression parameters are

yA identified

b recrs: standardized recursive residuals

yA recr: recursive residuals

yA srecr: covariance matrices of recursive residuals

253 scakfif

function [KKP,PT,recrs,recr,srecr,tl,A1,P1,KG]l=scakfff(y,X,Z,G,W,T,H,ins,i,g)
yA
yA

yA This function applies the augmented Kalman filter and smoother
b to the series y corresponding to the model

h

b y_t = X_txbeta + Z_t*alpha_t + G_t*epsilon_t

yA alpha_{t+1}= W_t*beta + T_t*alpha_t + H_t*epsilon_t

183

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
b
h
h
o
h
h
h
h
h
h
h
b
h
h
h
h
h
h
h
h
h
h
b

where epsilon_t is (0,sigma~2I),

with initial state

alpha_1= ¢ + W_Oxbeta + a_1 + A_lxdelta

where ¢ is (0,0Omega) and delta is (0,kI) (diffuse). A single
collapse is applied to get rid of the diffuse component. The
regression parameter vector, g, is considered fixed.

Input parameters:

y:
X

ins:

g

an
an
a
it
an
a
an
a
an

(n x p) matrix of observations;

(n*p x nbeta) matrix containing the X_t matrices;

(p x nbeta) if it is time invariant;

can be []

(n*p x nalpha) matrix containing the Z_t matrices;
(p x nalpha) matrix if it is time invariant

(n*p x nepsilon) matrix containing the G_t matrices;
(p x nepsilon) matrix if it is time invariant
(n*nalpha x nbeta) matrix containing the W_t

matrices;

an

(nalpha x nbeta) matrix if it is time

invariant; it can be []

an

(n*nalpha x nalpha) matrix containing the T_t

matrices;

an
an

(nalpha x nalpha) matrix if it time invariant
(n*nalpha x nepsilon) matrix containing the H_t

matrices;

an

(nalpha x nepsilon) if it is time invariant

an nalpha x (cctcwO+cal+ccal) matrix containing the
initial state information, according to array i below

a

1 x 4 array containing 4 integers, i=[cc cw0 cal

ccal], where

cc
cwO
cal
ccal

= nalpha if c is not missing (0 if c¢ missing)
= number of columns in W_O (0 if W_O missing)
1 if a_1 is not missing (0 if a_1 missing)
number of columns in A_1 (0 if A_1 missing)

: the beta vector, considered fixed

Output parameters:
an (n x nalpha) matrix containing the estimated x_{t|t}
an (n*nalpha x nalpha) matrix containing the

KKP
PT

184

yA Mse of x_{tl|t}

yA recrs: standardized recursive residuals

pA recr: recursive residuals

% srecr: covariance matrices of recursive residuals

/A tl: initial time of the collapsed filter

yA A1: x_{t1|t1-1} initial state for the collapsed filter

A P1: Mse(x_{t1lt1-1})

yA KG: stack of the Kalman gain vectors for the collapsed filter

254 scakfffsqrt

function [KKP,PT,recrs,recr,srecr,tl,Al1,LP1,KG]=scakfffsqrt(y,X,Z,G,W,T,H,...

% ins,i,g,icollps)

h

/A This function applies the square root version of the two stage
yA Kalman filter to the series y corresponding to the model to
pA obtain the filtered estimator of the state vector, its Mse,
yA and recursive residuals. The regression coefficient, g, is

b considered fixed.

h

% y_t = X_txbeta + Z_txalpha_t + G_t*epsilon_t

b alpha_{t+1}= W_t*beta + T_t*alpha_t + H_t*epsilon_t

b

b where epsilon_t is (0,sigma”2I),

h

A with initial state

b

% alpha_1= c¢ + W_Ox*beta + a_l + A_1lxdelta

h

pA where c¢ is (0,Omega) and delta is (0,kI) (diffuse). A single
yA collapse is applied to get rid of the diffuse component.

b

b Input parameters:

% y: an (n x p) matrix of observations;

b X : an (n*p x nbeta) matrix containing the X_t matrices;
yA a (p x nbeta) if it is time invariant;

b it can be []

yA Z : an (n*p x nalpha) matrix containing the Z_t matrices;
% a (p x nalpha) matrix if it is time invariant

yA G : an (n*p x nepsilon) matrix containing the G_t matrices;
pA a (p x nepsilon) matrix if it is time invariant

% W : an (n*nalpha x nbeta) matrix containing the W_t

185

h
h
h
o
h
h
h
h
h
h
h
h
o
h
h
h
h
h

ins:

g

matrices;
an (nalpha x nbeta) matrix if it is time
invariant; it can be []
: an (n*nalpha x nalpha) matrix containing the T_t
matrices;
an (nalpha x nalpha) matrix if it time invariant
: an (n*nalpha x nepsilon) matrix containing the H_t
matrices;
an (nalpha x nepsilon) if it is time invariant
an nalpha x (cctcwO+cal+ccal) matrix containing the
initial state information, according to array i below
:a 1 x 4 array containing 4 integers, i=[cc cw0 cal
ccall], where
cc = nalpha if ¢ is not missing (0 if ¢ missing)

cw0 = number of columns in W_O (0 if W_O missing)
cal =1 if a_1 is not missing (0 if a_1 missing)
ccal = number of columns in A_1 (0 if A_1 missing)

: the beta vector, considered fixed

yA icollps= an integer, corresponding to the observation number in
which a collapse takes place

h
b
h
h
o
h
o
h
h
h
h
h
h

255

function [KKP,PT,hd,Md,initf,recrs,recr,srecr]=scakffsqrt(y,X,Z,G,W,T,H,...

h
h
h
h
h
h

Output parameters:

KKP
PT

recrs:
recr:
srecr:
tl:
Al:
LP1:
KG:

an (n x nalpha) matrix containing the estimated x_{t|t}

: an (n*nalpha x nalpha) matrix containing the

Mse of x_{tlt}

standardized recursive residuals

recursive residuals

covariance matrices of recursive residuals

initial time of the collapsed filter

x_{t1lt1-1} initial state for the collapsed filter

Square root of Mse(x_{t1llt1-1})

stack of the Kalman gain vectors for the collapsed filter

scakffsqrt

This

ins,i,icollps)

function applies the square root version of the two stage

Kalman filter to the series y corresponding to the model to
obtain the filtered estimator of the state vector, its Mse,

186

h
h
h
o
h
h
h
h
h
h
h
h
o
h
o
h
h
h
h
h
b
h
h
o
h
o
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
b

and recursive residuals.

y_t = X_t*beta + Z_t*alpha_t + G_t*epsilon_t
alpha_{t+1}= W_t*beta + T_t*alpha_t + H_txepsilon_t

where epsilon_t is (0,sigma”2I),

with initial state

alpha_1= c + W_Oxbeta + a_1 + A_1xdelta

where ¢ is (0,Omega) and delta is (0,kI) (diffuse). A single
collapse is applied to get rid of the diffuse component.

Input parameters:

y:
X

ins:

an
: an
a
it

(n x p) matrix of observations;

(n*p x nbeta) matrix containing the X_t matrices;

(p x nbeta) if it is time invariant;

can be []

(n*p x nalpha) matrix containing the Z_t matrices;
(p x nalpha) matrix if it is time invariant

(n*p x nepsilon) matrix containing the G_t matrices;
(p x nepsilon) matrix if it is time invariant
(n*nalpha x nbeta) matrix containing the W_t

matrices;

an

(nalpha x nbeta) matrix if it is time

invariant; it can be []

: an (n*nalpha x nalpha) matrix containing the T_t
matrices;
an (nalpha x nalpha) matrix if it time invariant

.an

(n*nalpha x nepsilon) matrix containing the H_t

matrices;

an

(nalpha x nepsilon) if it is time invariant

an nalpha x (cc+cwO+cal+ccal) matrix containing the
initial state information, according to array i below

ca

1 x 4 array containing 4 integers, i=[cc cwO cal

ccal], where

cc
cwO
cal
ccal

= nalpha if ¢ is not missing (0 if c¢ missing)
number of columns in W_0 (0 if W_O missing)
1 if a_1 is not missing (0 if a_1 missing)
= number of columns in A_1 (0 if A_1 missing)

icollps= an integer, corresponding to the observation number in

which

a collapse takes place

187

T

b Output parameters:

b KKP : an (n x nalpha) matrix containing the estimated x_{t|t}

% PT : an (n*nalpha x nalpha) matrix containing the

yA Mse of x_{tlt}

% hd : the beta estimate

b Md : the Mse of hd

yA initf: flag to indicate when regression parameters are identified
pA recrs: standardized recursive residuals

% recr: recursive residuals

pA srecr: covariance matrices of recursive residuals

256 scakfle2

function [e,f,hb,Mb,A,P,qyy,R,0lsres]=scakfle2(y,X,Z,G,W,T,H,ins,i,chb)
yA
pA

yA This function applies the two stage Kalman filter to the series y
yA for prediction and likelihood evaluation corresponding to the
% model

b

b y_t = X_t*beta + Z_t*alpha_t + G_t*epsilon_t

% alpha_{t+1}= W_tx*beta + T_t*alpha_t + H_t*epsilon_t,

A

yA where epsilon_t is (0,sigma”2I),

A

yA with initial state

b

yA alpha_1= c + W_Oxbeta + a_1 + A_l*delta

b

% where ¢ is (0,Omega) and delta is (0,kI) (diffuse). A single
b collapse is applied to get rid of the diffuse component.

b

% Input parameters:

b y: an (n x p) matrix of observatiomns;

yA X : an (n*p x nbeta) matrix containing the X_t matrices;

% a (p x nbeta) if it is time invariant;

yA it can be []

yA Y/ : an (n*p x nalpha) matrix containing the Z_t matrices;
yA a (p x nalpha) matrix if it is time invariant

pA G : an (n*p x nepsilon) matrix containing the G_t matrices;
% a (p x nepsilon) matrix if it is time invariant

188

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
o
h
o
h
h
h

h
h

257

ins:

chb=

an (n*nalpha x nbeta) matrix containing the W_t matrices;
an (nalpha x nbeta) matrix if it is time invariant;
it can be []

: an (n*nalpha x nalpha) matrix containing the T_t
matrices;
an (nalpha x nalpha) matrix if it time invariant
an (n*nalpha x nepsilon) matrix containing the H_t
matrices;
an (nalpha x nepsilon) if it is time invariant

an nalpha x (cc+cwO+cal+ccal) matrix containing the initial
state information, according to array i below

a

1 x 4 array containing 4 integers, i=[cc cwO cal

ccall], where

cc
cwO
cal
ccal

= nalpha if ¢ is not missing (0 if c¢ missing)
number of columns in W_0 (0 if W_O missing)
1 if a_1 is not missing (0 if a_1 missing)
number of columns in A_1 (0 if A_1 missing)

1 compute hb and Mb

0 do

not compute hb and Mb

Output parameters:

e
f

hb
Mb
A

P

aQyy
R

olsres

: residual vector (Q’_2xy)
: factor by which the residuals are to be multiplied

for minimization of the nonlinear sum of squares
: the beta estimator
: the Mse of the beta estimator
: the estimated augmented state vector at the end of
filtering
: the Mse of A at the end of filtering
Q’_1*y in the QR decomposition to estimate beta (chb=1)
: R in the QR decomposition to estimate beta (chb=1)
: vector of OLS residuals (chb=1)

scakflepc

function [e,f,hb,Mb,A,P,qyy,R]l=scakflepc(y,X,Z,G,W,T,H,ins,i,chb)

h
h
h
h
h
h

This function applies the two stage Kalman filter to the series
y for prediction and profile likelihood evaluation
corresponding to the model

189

h
h
h
h
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
b
h
h
o
h
o
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
h

y_t = X_t*beta + Z*alpha_t + G*epsilon_t
alpha_{t+1}= W_t*beta + T*alpha_t + H*epsilon_t,

where epsilon_t is (0,I),
with initial state
alpha_1 = delta

that is considered fixed and unknown. It is assumed that the
state space model is in innovations form and P_t = 0 for all t.
That is, G=Sigma~{1/2} and H=K*Sigma~{1/2}, where Sigma =
Sigma~{1/2}*Sigma~{1/2 ’} is the Cholesky decomposition of the
covariance matrix of the innovations. Therefore, the recursions
are simplified and only the innovations and the state
estimators need to be updated. No collapsing takes place. No
missing values are allowed.

Input parameters:

y: an (n x p) matrix of observations;
X : a (p x nbeta) if it is time invariant;
it can be []
Z : a (p x nalpha) matrix if it is time invariant
G a (p x nepsilon) matrix if it is time invariant
W : an (n*nalpha x nbeta) matrix containing the W_t matrices;

an (nalpha x nbeta) matrix if it is time invariant;
it can be []
T : an (nalpha x nalpha) matrix if it time invariant
H : an (nalpha x nepsilon) if it is time invariant
ins: an nalpha x (cc+cwO+cal+ccal) matrix containing the initial
state information, according to array i below
i :a 1 x 4 array containing 4 integers, i=[cc cw0 cal
ccal], where
cc =0
cw0 =0
cal =0
ccal = nalpha
chb= 1 compute hb and Mb
0 do not compute hb and Mb

Output parameters:
e : residual vector (Q’_2x*y)
f : factor by which the residuals are to be multiplied

190

yA for minimization of the nonlinear sum of squares

yA hb : the beta estimator

/A Mb : the Mse of the beta estimator

pA A : the estimated augmented state vector at the end of
b filtering

yA P : the Mse of A at the end of filtering

b qyy : Q’_1xy in the QR decomposition to estimate beta

yA R : R in the QR decomposition to estimate beta

258 scakflesqrt

function [e,f,hb,Mb,A,LP,qyy,R]=scakflesqrt(y,X,Z,G,W,T,H,ins,i,chb,icollps)
yA
/A

/A This function applies the square root version of the two stage
yA Kalman filter to the series y for prediction and likelihood

b evaluation corresponding to the model

h

% y_t = X_txbeta + Z_txalpha_t + G_t*epsilon_t

yA alpha_{t+1}= W_t*beta + T_t*alpha_t + H_t*epsilon_t,

b

b where epsilon_t is (0,sigma”2I),

b

/A with initial state

h

/A alpha_1= c + W_O*beta + a_1 + A_lxdelta

b

pA where ¢ is (0,Omega) and delta is (0,kI) (diffuse). A single
yA collapse is applied to get rid of the diffuse component.

b

yA Input parameters:

% y: an (n x p) matrix of observations;

b X : an (n*p x nbeta) matrix containing the X_t matrices;

% a (p x nbeta) if it is time invariant;

b it can be []

yA YA : an (n*p x nalpha) matrix containing the Z_t matrices;
/A a (p x nalpha) matrix if it is time invariant

yA G : an (n*p x nepsilon) matrix containing the G_t matrices;
pA a (p x nepsilon) matrix if it is time invariant

yA W : an (n*nalpha x nbeta) matrix containing the W_t matrices;
% an (nalpha x nbeta) matrix if it is time invariant;

pA it can be []

191

h
h
h
o
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
b
h
h
o
h
o
h
h

T

259

ins:

chb=

icollps=

an (n*nalpha x nalpha) matrix containing the T_t
matrices;
an (nalpha x nalpha) matrix if it time invariant
: an (n*nalpha x nepsilon) matrix containing the H_t
matrices;
an (nalpha x nepsilon) if it is time invariant
an nalpha x (cc+cwO+cal+ccal) matrix containing the initial
state information, according to array i below
:a 1 x 4 array containing 4 integers, i=[cc cwO cal
ccal], where

cc = nalpha if ¢ is not missing (0 if c missing)
cw0 = number of columns in W_O (0 if W_O missing)
cal =1 if a_1 is not missing (0 if a_1 missing)

ccal = number of columns in A_1 (0 if A_1 missing)

1 compute hb and Mb

0 do not compute hb and Mb

an integer, corresponding to the observation number in
which a collapse takes place

Output parameters:

e : residual vector (Q’_2x*y)
f : factor by which the residuals are to be multiplied
for minimization of the nonlinear sum of squares
hb : the beta estimator
Mb : the Mse of the beta estimator
A : the estimated augmented state vector at the end of
filtering
P : the Mse of A at the end of filtering
qyy Q’_1xy in the QR decomposition to estimate beta
R : R in the QR decomposition to estimate beta
scakfs

function [KKP,PT,hd,Md]=scakfs(y,X,Z,G,W,T,H,ins,i)

h
b
h
h
h
h
h
b

This function applies the augmented Kalman filter and smoother
to the series y corresponding to the model

y_t

= X_t*beta + Z_t*alpha_t + G_t*epsilon_t

alpha_{t+1}= W_t*beta + T_t*alpha_t + H_t*epsilon_t

192

h
h
h
h
h
h
h
h
h
h
h
h
o
h
o
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
b
h
h
h
h
h
h
h
h
h
h
b

where epsilon_t is (0,sigma”2I),
with initial state
alpha_1= c + W_Oxbeta + a_1 + A_1lxdelta

where ¢ is (0,Omega) and delta is (0,kI) (diffuse). A single
collapse is applied to get rid of the diffuse component.

Input parameters:

y: an (n x p) matrix of observations;

X : an (n*p x nbeta) matrix containing the X_t matrices;
a (p x nbeta) if it is time invariant;
it can be []

YA : an (n*p x nalpha) matrix containing the Z_t matrices;
a (p x nalpha) matrix if it is time invariant

G : an (n*p x nepsilon) matrix containing the G_t matrices;
a (p x nepsilon) matrix if it is time invariant

W : an (n*nalpha x nbeta) matrix containing the W_t
matrices;

an (nalpha x nbeta) matrix if it is time invariant;
it can be []

T : an (n*nalpha x nalpha) matrix containing the T_t
matrices;
an (nalpha x nalpha) matrix if it time invariant

H : an (n*nalpha x nepsilon) matrix containing the H_t
matrices;

an (nalpha x nepsilon) if it is time invariant
ins: an nalpha x (cc+cwO+cal+ccal) matrix containing the
initial state information, according to array i below

i :a 1 x 4 array containing 4 integers, i=[cc cw0 cal
ccal], where
cc = nalpha if ¢ is not missing (0 if c missing)
cw0 = number of columns in W_O0 (0 if W_O missing)
cal =1 if a_1 is not missing (0 if a_1 missing)
ccal = number of columns in A_1 (0 if A_1 missing)

Output parameters:
KKP : an (n x nalpha) matrix containing the estimated x_{tIn}
PT : an (n*nalpha x nalpha) matrix containing the
Mse of x_{t|n}
hd : the (delta’,beta’)’ estimate

193

% Md : the Mse of hd

260 scakfssqrt

function [KKP,PT,hd,Md]=scakfssqrt(y,X,Z,G,W,T,H,ins,i,icollps)
pA
yA

yA This function applies the square root version of the augmented
yA Kalman filter and smoother to the series y corresponding to
b the model

b

pA y_t = X_t*beta + Z_t*alpha_t + G_t*epsilon_t

b alpha_{t+1}= W_t*beta + T_t*alpha_t + H_t*epsilon_t

h

b where epsilon_t is (0,sigma”2I),

h

pA with initial state

h

% alpha_1= c + W_Ox*beta + a_1 + A_lxdelta

h

pA where c¢ is (0,Omega) and delta is (0,kI) (diffuse). A single
/A collapse is applied to get rid of the diffuse component.

b

b Input parameters:

yA y: an (n x p) matrix of observations;

% X : an (n*p x nbeta) matrix containing the X_t matrices;
yA a (p x nbeta) if it is time invariant;

b it can be []

yA Z : an (n*p x nalpha) matrix containing the Z_t matrices;
% a (p x nalpha) matrix if it is time invariant

% G : an (n*p x nepsilon) matrix containing the G_t matrices;
% a (p x nepsilon) matrix if it is time invariant

b W : an (n*nalpha x nbeta) matrix containing the W_t

pA matrices;

b an (nalpha x nbeta) matrix if it is time invariant;
pA it can be []

% T : an (n*nalpha x nalpha) matrix containing the T_t

yA matrices;

yA an (nalpha x nalpha) matrix if it time invariant

yA H : an (n*nalpha x nepsilon) matrix containing the H_t

pA matrices;

% an (nalpha x nepsilon) if it is time invariant

194

yA ins: an nalpha x (cc+cwO+cal+ccal) matrix containing the

pA initial state information, according to array i below
yA i :a 1 x 4 array containing 4 integers, i=[cc cw0 cal
% ccall], where

b cc = nalpha if ¢ is not missing (0 if ¢ missing)

yA cw0 = number of columns in W_O (0 if W_O missing)

/A cal =1 if a_1 is not missing (0 if a_1 missing)

yA ccal = number of columns in A_1 (0 if A_1 missing)

pA icollps= an integer, corresponding to the observation number in
yA which a collapse takes place

b

h

b Output parameters:

b KKP : an (n x nalpha) matrix containing the estimated x_{t|n}
% PT : an (n*nalpha x nalpha) matrix containing the

b Mse of x_{t|n}

% hd : the (delta’,beta’)’ estimate

A Md : the Mse of hd

261 seasdm

function Y=seasdm(N,datei)
pA
yA

yA This function generates a matrix of seasonal dummies

262 seasdmom

function Y=seasdmom(N,datei)

h

2

b This function generates a matrix of seasonal dummies
% orothogonal to the mean

263 SEATSres

function [res,str] = SEATSres(out)

b

b

% This function obtains the residuals given by program SEATS by Gomez
% and Maravall (see Gomez, V., and Maravall, A., 2001. Programs TRAMO

195

% and SEATS, Instructions for the User (Beta Version: June 1997)

% (Working Paper No. 97001). Direccion General De Presupuestos,

% Ministry of Finance, Madrid, Spain.)

o

% input arguments:

% out: a structure, the output of function arimaestos

h

% output arguments:

% res: a vector containing the SEATS residuals

% str: a structure containing the pure MA model used in Burman (1980)

264 shank

function [b,a,err] = shank(nu,db,da)
yA

% Given the impulse response function nu(z) = nu_0 + nu_l*z + nu_2%z"2 +

%, this function obtains the rational approximation nu(z) "=
% b(z)/a(z), where b(z) = b_0 + b_1*z + ... + b(nb)*z"nb and a(z) =1
% + a_l*%z + ... + a(na)*z"na. The coefficients of b(z) and a(z) are

% computed using Shank’s method (Discrete Random signal processing, p.
% 558)

h

% Input arguments:

% nu: the impulse response function

% db: the degree of b(z)

% da: the degree of a(z)

b

% Output arguments:

% b: a (db+1) array containing the b(z) coefficients in ascending order
% a: a (da+l) array containing the a(z) coefficients in ascending order

265 sinfelo

function [meind,metip]=sinfelo(eind,etip,nind,ntip,imin)

t

% this function stores information on the eliminated outlier

h

% Input arguments:

% eind: array containing the time index of the previously eliminated

/A outliers

% etip: array containing the type of the previously eliminated outliers
% Output arguments:

196

% mind: array incorporating the new time index
% mtip: array incorporating the new typer

266 skewkur

function [Skew,Kurt,Sk,Ss]l= skewkur(e,me,ve,nr,ne)

%k kot ok ook ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk s o sk sk sk sk ok ok ok ok ok ok ok ok ok sk ko ok kokokokok ok ok ok
% This function calculates components of the skewness and kurtosis test
% statistics

h

T INPUTS:

b e : residual vector

A me : mean of e

b ve : variance of e

b nr : number of regression variables
b ne : length of e

%
yA OUTPUTS:

yA Skew : skewness
% Kurt : kurtosis
% Sk : constant to obtain kurtosis test statistic: (Kurt/Sk) "2
% Ss : constant to obtain skewness test statistic: (Skew/Ss) "2

267 smfest

function [F,xv] = smfest(xv,y,s,pfix,pvar,xf,chb,models)

%okttt ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk s sk ok ok sk sk sk ke okokokok ok ok ok ok sk sk sk sk sk sk sk sk sk sk s sk sk sk sk sk sk sk sk koo ok ok o
% This function transforms model parameters so that their values lie in
% the feasable region and evaluates the residuals for the nonlinear

% minimization of the sum of squares of a canonical structural model

h

% INPUTS:

pA Xv : vector with parameters to be estimated

yA y : data vector

pA s : frequency of the data

yA pfix : array with fixed parameter indices

% pvar : array with variable parameter indices

b xf : vector with fixed parameters

% chb = 1 : compute beta estimator hb and MSE of hb
% = 0 : do not compute hb and MSE of hb

% models : structure containing model information

h

197

% OQUTPUTS:

pA F : residual vector multiplied with factor f given by scakfle2;
b used in minimization of nonlinear sum of squares

% xv : vector with parameters to be estimated that has been

/A tranformed if necessary

268 smfestm

function [F,xv] = smfestm(xv,y,pfix,pvar,xf,chb,models)

%t ke ok ok ok sk sk ok sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok ok sk sk sk sk s s o ok ok ok ok sk sk ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok sk sk ok ok ok ok
% This function transforms model parameters so that their values lie in
% the feasable region and evaluates the residuals for the nonlinear

% minimization of the sum of squares of a canonical structural model

h

% INPUTS:

% xv : vector with parameters to be estimated

/A y : data vector

yA s : frequency of the data

/A pfix : array with fixed parameter indices

yA pvar : array with variable parameter indices

yA xf : vector with fixed parameters

yA chb = 1 : compute beta estimator hb and MSE of hb
% = 0 : do not compute hb and MSE of hb

% models : structure containing model information
h
% OQUTPUTS:

% F : residual vector multiplied with factor f given by scakfle2;
A used in minimization of nonlinear sum of squares

yA xv : vector with parameters to be estimated that has been

b tranformed if necessary

269 smfun

function [F,e,g,M,Pevf,A,P,olsres] = smfun(xx,y,s,pfix,pvar,xf,chb,models)
93k 3k ok sk sk ok sk sk ok sk ok sk 3 ok sk sk ok K ok ok ok ok 3 ok K ok ok ok ok 3 ok sk 3 ok K sk ok K ok ok 3 ok ok 3 ok K ok ok 3 ok ok 3 ok K 3k ok 3k sk ok K ok ok ok K ok ok
% This function evaluates the residuals for the nonlinear minimization

% of the sum of squares of a canonical structural model

h

% INPUTS:

b XX : vector with parameters to be estimated
b y : data vector

b s : frequency of the data

198

yA pfix : array with fixed parameter indices

yA pvar : array with variable parameter indices

b xf : vector with fixed parameters

% chb = 1 : compute beta estimator hb and MSE of hb
b = 0 : do not compute hb and MSE of hb

% models : structure containing model information
h
% OUTPUTS:

yA F : residual vector multiplied with factor f given by scakfle2;
yA used in minimization of nonlinear sum of squares

b e : residual vector

b g : the beta estimator

b M : the MSE of the beta estimator

b Pevf : prediction error variance

pA A : the estimated augmented state vector at the end of

b filtering

pA P : the MSE of A at the end of filtering

270 smfunm

function [F,e,g,M,Pevf,A,P] = smfunm(xx,y,pfix,pvar,xf,chb,models)

93k ke ok sk 3k ok sk ok ok 3 ok sk 3 ok 3K 3k ok 3 oK ok 3 oK 3K 3 ok 3K 3k ok 3 ok ok 3 ok 3K 3 ok 3 3k ok 3 ok ok 3 ok K 3 ok 3 3k ok 3 ok ok 3 ok 3K 3k ok 3 3k ok 3 oK ok 3 ok K 3k ok 3k K
% This function evaluates the residuals for the nonlinear minimization
% of the sum of squares of a canonical structural model

T

% INPUTS:

yA xx : vector with parameters to be estimated

pA y : data vector

yA pfix : array with fixed parameter indices

pA pvar : array with variable parameter indices

yA xf : vector with fixed parameters

% chb = 1 : compute beta estimator hb and MSE of hb
b = 0 : do not compute hb and MSE of hb

% models : structure containing model information
h
% OUTPUTS:

yA F : residual vector multiplied with factor f given by scakfle2;
yA used in minimization of nonlinear sum of squares

b e : residual vector

b g : the beta estimator

b M : the MSE of the beta estimator

yA Pevf : prediction error variance

199

yA A : the estimated augmented state vector at the end of
b filtering
b P : the MSE of A at the end of filtering

271 smoothgen
function [KKP,PT,hd,Md]=smoothgen(y,X,Z,G,W,T,H,ins,i,mucd,U,C,D)

h
h

pA This function applies the augmented Kalman filter and smoother
/A to the series y corresponding to the model

b

b y_t = X_txbeta + Z_t*alpha_t + G_t*epsilon_t

yA alpha_{t+1}= W_t*beta + T_t*alpha_t + H_t*epsilon_t

b

yA where epsilon_t is (0,sigma”2I),

b

yA with initial state

b

yA alpha_1= c + W_Ox*beta + a_1 + A_1xdelta

b

b where ¢ is (0,Omega) and delta is (0,kI) (diffuse). A single
% collapse is applied to get rid of the diffuse component.

/A

pA It is desired to smooth the vector

b

yA Y_t = U_tx\beta + C_t*alpha_t + D_t*epsilon_t

b

yA Input parameters:

pA y: an (n x p) matrix of observations;

% X : an (n*p x nbeta) matrix containing the X_t matrices;
b a (p x nbeta) if it is time invariant;

b it can be []

% Z : an (n*p x nalpha) matrix containing the Z_t matrices;
b a (p x nalpha) matrix if it is time invariant

yA G : an (n*p x nepsilon) matrix containing the G_t matrices;
b a (p x nepsilon) matrix if it is time invariant

yA W : an (n*nalpha x nbeta) matrix containing the W_t

pA matrices;

yA an (nalpha x nbeta) matrix if it is time invariant;

b it can be []

% T : an (n*nalpha x nalpha) matrix containing the T_t

200

h
h
h
h
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
b
h
h
o
h
h
h
h

272

matrices;
an (nalpha x nalpha) matrix if it time invariant
H : an (n*nalpha x nepsilon) matrix containing the H_t
matrices;
an (nalpha x nepsilon) if it is time invariant
ins: an nalpha x (cc+cwO+cal+ccal) matrix containing the
initial
state information, according to array i below

i ca

c
cc

cwO
cal

1 x 4 array containing 4 integers, i=[cc cw0 cal
call] , where

= nalpha if c is not missing (0 if ¢ missing)
number of columns in W_0 (0 if W_O missing)
1 if a_1 is not missing (0 if a_1 missing)

ccal = number of columns in A_1 (0 if A_1 missing)

mucd: an

U : an
an
it

C : an

an
D : an
an

integer, the dimension of Y_t

(n*mucd x nbeta) matrix containing the U_t matrices;
(mucd x nbeta) if it is time invariant

can be []

(n*mucd x nalpha) matrix containing the C_t matrices;
(mucd x nalpha) if it is time invariant

(n*mucd x nepsilon) matrix containing the D_t matrices;
(mucd x nepsilon) if it is time invariant

Output parameters:

KKP : an (n x mucd) matrix containing the estimated Y_{t|n}
PT : an (mucd*n x mucd) matrix containing the Mse of Y_{tIn}
hd : the (delta’,beta’)’ estimate

Md : the Mse of hd

SMTres

unction [smtres] = SMTres(out)

h
h
h
h
h
h
h
h
h
h

This function obtains the OLS residuals after having used function
arimaestos, arimaestni or arimaestwi

input arguments

out: a structure, the output of function arimaestos, arimaestni or

arinamestwi

output argument

S:

201

% res: a vector containing the OLS residuals

273 sn2u

function [p,ierrsn2u] = sn2u(c)

% This function transforms a polynomial in the variables S(n)=z"n +
% z"(-n) into a polynomial in the variable U=z + z~(-1).

% The recursions

% S(n) = UxS(n-1) - S(n-2), n>=2

» s(0)=2, 8(1)=U,

% are used.

b

% c on input contains the coefficients in the order 1,2,...,n,

% oc=c(l) + c(2)*5(1) + ... + c(n-1)*S(n-2) + c(n)*S(n-1)

% p on output contains the coefficients in reversed order n, n-1,
h 1, p(U) = p(L)*U~(n-1) + p(D*U~(n-2) + ... + p(n-1)*U + p(n)

274 SortSchur

function [Q,R,ap] = SortSchur(Q,R,z);
% this function sorts the eigenvalues of the Schur decompostion

275 specgraph

function specgraph(th,phi,var)

O st sk sk sk s e ok sk sk sk o o o sk sk sk ok ok o ok sk sk sk sk s ke sk sk sk sk s ke sk sk sk sk sk ok sk sksk sk e ke sk sk sk sk s ke sk sk sk sk sk e sk sksksk sk s ke sk sksk sk sk ok
% PURPOSE: This function graphs the spectrum of the ARIMA model

o

b phi(B)y_t = th(B)*a_t

h

e

% USAGE: specgraph(th,phi,var)

h

% Inputs: phi : a polynomial containing the AR part

b th : a polynomial containing the MA part
yA var : a positive number, variance of the series model
yA innovations

202

276 spectralan

function spr = spectralan(y,per,win,corlag,graph,vnames)

b
h
h
h
h
h
h
o
h
2
h
h
h
b
h
h
h
h
o
h
2
h
b
h
h
h
h
o
h
h
h
o
h
h
h
h
h
h
h
h

Spectral analysis

This programa computes the spectrum, coherence, phase delay, gain and
cross correlations between a reference cycle and other cycles. If only
one series is input, the periodogram and the autocorrelations are
computed.

INPUTS :
y : (ly x ny) matrix with the series;
if ny = 1, univariate spectral analysis and computation
of autocorrelations of y are performed,
if ny > 1, multivariate spectral analysis
and computation of cross-correlations are performed;
the program assumes that the first column contains
the reference series
per : frequency of the data (number of seasons)
win : window function used for (cross-)periodogram smoothing
0, no window is applied (nonsmoothed periodogram) .
1, the Blackman-Tukey window
2, the Parzen window (default)
3, the Tukey-Hanning window
corlag : number of leads and lags at which the
auto-/cross-correlations are computed; default: ly-1
graph : O, do not produce graphs
1, produce graphs (default)
vnames : string cell array with names for the series; the program
assumes that their order coincides with the order in y;
default: refseries, seriesl, series2,...

OUTPUT :
spr : structure containing the following fields
always
.y : input matrix y
.per : input per
.names : input names or names created by the program
.frq : frequencies

depending on the size of y
fields for ny = 1:

203

h
h
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
h
h
h
h
h
h
h
b
h
h
h

277

£
.Ccr

(smoothed) periodogram of the series
autocorrelations

fields for ny > 2,

£ matrix with columns containing the (smoothed)
periodogram of the reference series and all the
other series

.cr matrix containing the autocorrelations of the
reference series and the cross correlations
between the reference series and all the other
series

.co matrix with columns containing coherence
between the ref. series and all the other series

.ga matrix with columns containing the gain
between the ref. series and all the other series

.ph matrix with columns containing the phase delay
between the ref. series and all the other series

.mc array containing the maximum coherence values
between the reference series and all the other
series

.phmc array containing the phase delays corresponding
to the maximum coherence

.mcor array containing the maximum correlations
between the reference series and all the other
series

.imcor time indices corresponding to the maximum cross
correlations

.mpa array containing the mean phase angle in
radians between the reference series and all the
other series

.mph array containing the mean phase delay between
the reference series and all the other series

sqrt_ckms

function [e,E,rSigmat]=sqrt_ckms(y,Y,str,maxupdt,tol)

b
b
h
b
h
h
T

This function applies to the series (y,Y) the square root CKMS
recursions corresponding to the model in echelon form

V-
X_

t = Y_t*beta + H*x_t + K*xa_t
{t+1}= F*x_t + a_t,

204

h
b where a_t is (0,sigmar2),

h

pA with initial state

h

yA alpha_1= (0,0Omega).

h

yA Input parameters:

pA y : an n x p matrix of observations

yA Y : an n x (p x nbeta) matrix containing the Y_t matrices; it
b can be []

yA str: a structure containing the model parameters

% maxupdt : an integer parameter equal to the maximum number of
b updates before passing to the steady state

% recursions. If maxupdt is empty, it is made equal to
/A the number of observations.

yA tol: a real parameter that controls when to pass to the steady
b state recursions. This happens when the difference

yA between the (1,1) element of the covariance square root

% of the filter and the (1,1) element of the covariance

yA square root of the model innovations is less than or

pA equal to tol.

h

b Output parameters:

b (e,E) : augmented residual vector

yA rSigmat : the square roots of the residual covariance matrices

278 ss2if

function [P,K,Sigma,U,iU] = ss2if(F, G, H, J, Q, S, R)

T

% This function transforms a general SS model into an innovations form
% solving the DARE. The state space form is

h

b x_{t+1} = Fx_{t} + Gu_{t}
b Y_{t} = Hx_{t} + Jv_t,
/A

% E[u_t]

% [v_t]l[u’_s, v’_s]

b =[Q s]

yA [S’ R]\delta_{ts}

T

205

h
h
h
o
h
h

T

P = Solution of the DARE (discrete algebraic Riccati equation) =
MSE(\hat{x}_{T}).

K = Kalman gain in the innovations model
\hat{x}_{t+1} = F\hat{x}_{t} + Ka_{t}
Y_{t} = H\hat{x}_{t} + a_{t},

Sigma = covariance matrix of the innovations = Var(a_{t})
U = Sigma~{1/2}
iU = Sigma~{-1/2}

279 ss2lcvarmaxf

function [phi,theta,ierror]=ss2lcvarmaxf(H,F,K,G)

h
h
h
h
h
h
o
h
h
h
h
h
h
h
b
h
h
h
b
h
h
h
h
h
h
h
h
b
h
h

This function computes a left coprime VARMAX model corresponding to
a system (H,F,K,G),

x(t+1) = F*x (%) + Kxu(t)

y(t) = Hxx(t) + G*u(t),
where H is a k x n vector, F is a square n x n matrix, K is an n x m
matrix and G is a k x m. The system (H,F,K,G) is not necessarily

minimal.
Input: H = a k x n matrix
F = an n X n matrix
K = an n X m matrix
G = a k x m matrix
If G is not given, it is assumed that m=k and G = I_k.
OQutput: phi = a k x k x 1 matrix containing the AR matrix
polynomial
theta = a k x m x 1 matrix containing the MA matrix %
1 = max(n_i:i=1,...,k), where n_i are the Kronecker
indices.
ierror = 0,1 a flag for errors in dimensions

The method uses the algorithm of Chen to pass from right to left MFD.
It is based on the decomposition

Y(t) [zH(I-zF)~"{-1}K + Glu(t) = [S(z2)R"{-1}(z2)K + Glu(t)

[Rb~{-1}(2)Sb(2)K + Glu(t),

that implies

Rb(z)Y(t) = [Sb(z)K + Rb(z)Glu(t)

206

polynomial

% or

b

% phi(2)Y(t) = theta(z)u(t),

b

% where phi(z)=Rb(z) and theta(z)=Sb(z)K + Rb(z)G. This method is used
% in Kucera (1991), p. 226.

280 ssmpred

function [ypr,mypr,alpr,malpr]=ssmpred(n,p,A,P,X,Z,G,W,T,H,g,M)
yA
yA

/A This function computes n forecasts of the state vector and the
% observations corresponding to the model

h

yA y_t = X_txbeta + Z_t*alpha_t + G_t*epsilon_t

pA alpha_{t+1}= W_t*beta + T_t*alpha_t + H_txepsilon_t,

h

% where epsilon_t is (0,sigma~2I),

h

pA with initial state

h

% alpha_1= ¢ + W_Oxbeta + a_1l + A_lx*delta

h

% where ¢ is (0,0Omega) and delta is (0,kI) (diffuse).

h

yA Input parameters:

pA n : number of forecasts

yA p : number of variables

yA A : the estimated augmented state vector at the end of

yA filtering

yA P : the Mse of A at the end of filtering

b X : an (n*p x nbeta) matrix containing the X_t matrices if it
% is time-varying. A (p x nbeta) if it is time invariant.

b It can be []

yA Z : an (n*p x nalpha) matrix containing the Z_t matrices if it
/A is time-varying. A (p x nalpha) matrix if it is time

yA invariant

pA G : an (n*p x nepsilon) matrix containing the G_t matrices if
yA it is time-varying. A (p x nepsilon) matrix if it is time
pA invariant

yA W : an (n*nalpha x nbeta) matrix containing the W_t matrices

207

% if is time-varying. An (nalpha x nbeta) matrix if it is

% time invariant. It can be []

b T : an (n*nalpha x nalpha) matrix containing the T_t matrices
% if it is time-varying. An (nalpha x nalpha) matrix if it
/A time invariant.

yA H : an (n*nalpha x nepsilon) matrix containing the H_t

b matrices if it is time-varying. An (nalpha x nepsilon) if
pA it is time invariant.

pA g : the beta estimator

pA M : the Mse of the beta estimator

b

yA Output parameters:

% ypr : a (p x n) matrix containing the forecasts of the

/A observations

% mypr: a (p x p x n) array containing the Mse of forecasts

b alpr: an (nalpha x n) matrix containing the forecasts of the
pA state vector

pA malpr: an (nalpha x nalpha x n) array containing the Mse of alpr

281 ssmpredexg

function [ypr,mypr,alpr,malpr]=ssmpredexg(n,x,stx,sts)

o

b This function computes n forecasts of the exogenous part of a
yA VARMAX model in echelon form.

h

% The state space echelon form is:

h

% alpha_{t+1}

Falpha_{t} + B*x_t{t} + Kxa_{t}

% y_{t} = Y_{t}xbeta + H*alpha {t} + D*x_{t} + a_{t}
b

% Thus,

b

% y_{t} = Y_{t}*beta + V_{t} + U_{t},

b

% where V_{t} is the exogenous part,

/A

b V_{t} = [H*(zI - F)_{t}"{-1}B*x_{t} + Dxx_{t}] + H+F {t-1}*ml
/A

R —————————.

% USAGE: [ypr,mypr,alpr,malpr]=ssmpredexg(n,x,stx,sts)

b

208

yA Input parameters:

pA n : number of forecasts

b x : a (nobs x mx) matrix containing the input variables

% stx : a structure with fields .T, .Z, .B and .D such that

% T=F, Z=H, and B and D are matrices of the VARMAX model

yA stx = a structure. If it is empty, the inputs are nonstochastic and
/A their forecasts are included in x. If it is not empty, it
yA has fields .T, .Z, .H and .G corresponding to an VARMA

pA model followed by the inputs.

h

b Output parameters:

% ypr : a (p x n) matrix containing the forecasts of the

b observations

b mypr: a (p x p x n) array containing the Mse of forecasts

% alpr: an (nalpha x n) matrix containing the forecasts of the

A state vector

yA malpr: an (nalpha x nalpha x n) array containing the Mse of alpr

282 ssmspectfac

function [Theta,Omega]l=ssmspectfac(Gamma)

h

% This function computes the spectral factorization

b of the covariance generating function

yA G(z) = Gamma(0)+\sum_{i=1}"q Gamma(i)z"{i} + \sum_{i=1}"q Gamma’(i)z~{-i}.
% That is, it finds a matrix polynomial \Theta(z) = I+\Theta_lz+ ... +\Theta_qgz"{
yA such that G(z) = \Theta(z)\Omega\Theta’(z"{-1}). This is achieved by solving
b the Riccati equation for the Kalman filter based on covariance

yA data only

h

A Sigma = FSigmaF’ - (FSigmaH’ + G) (HSigmaH’ + Gamma(0))~{-1}(FSigmaH’ + G)°’
h

b This equation is the resulta of replacing P with -Sigma in the

pA usual DARE equation

h

pA P = FPF’ + GQG’ - (FPH’ + GS)(R + HPH’) {1} (FPH’ + GS)’,

h

yA given that in this case Pi = P + Sigma = 0. See Gomez (2016, Sec.

h 5.6)

h

% Input parameters:

% Gamma = an nxnxm matrix containing the covariances

209

% Gamma (0) , . .. ,Gamma(q)

% Output parameters:

% K = the moving average coefficients

% Omega = the covariance matrix of the innovations

283 sta2

function str = sta2(str)

% PURPOSE: given a structure passed after executing the second step of
% HR method such that the model is not stationary, this function makes
% it statiomary.

e

% USAGE: str = sta2(str)

% where: str = a structure containing the structure of the VARMAX
e

% RETURNS: str = a structure containing the inverted model

% ___

284 sta2r

function str = sta2r(str)

% PURPOSE: given a structure passed after executing the second step of
% HR method such that the model is not stationary, this function makes
% it stationary.

e

% USAGE: str = stal2r(str)

% where: str = a structure containing the structure of the VARMAX
Y

% RETURNS: str = a structure containing the inverted model

% ___

285 sta3d

function [str,ierror] = sta3(str)

% PURPOSE: given a structure passed after executing the third step of

% HR method such that the model is not stationary, this function makes
% it stationary.

e

% USAGE: str = sta3(str)

% where: str = a structure containing the structure of the VARMAX

% ___

% RETURNS: str = a structure containing the inverted model

286 stadr

function str = sta3r(str)

% PURPOSE: given a structure passed after executing the third step of

% HR method such that the model is not stationary, this function makes
% it stationary.

Y

% USAGE: str = sta3r(str)

% where: str = a structure containing the structure of the VARMAX
Y

% RETURNS: str = a structure containing the inverted model

% ___

287 stair

function [al,bl,k,u,C,v,ierror]=stair(a,b,tol,adj)

pA

% [A1,B1,K,U,C,V,IERROR]=STAIR(A,B,TOL,ADJ) performs the staircase reduction of
% the pair (A,B). The transformed pair (A1,B1) has the typical staircase form
% (here with 4 "stairs"):

h

% | X @ % % % % x | } K(1)
/A | X ok ok x x|} K(2)
% (B1:A1) :=(U’*B*V:U’*AxU) = | X *x*xx | } K(3)
b | X * x| } K4
/A I Z 1%

b

% where each "stair" X has full row rank K(i) and has a lower

% triangular form (left adjusted) or an upper triangular form (right

% adjusted). In case adj is not given on input, the matrix V to adjust
% the X is not computed and the "stairs" X have just full row rank. The
% square matrix Z (if present) contains the uncontrollable modes of

% (A,B). The parameter tol is used to calculate the rank of the

% triangular matrices given by the

% qr algorithm.

o

% tol = [], the tolerence is computed by the program

h

2

211

h
h
h
o
h

adj = ’1’, lower triangular form (left adjusted)
’r’, upper triangular form (right adjusted)

This function is taken from VanDoren (2003) and modified by me on
May 2008.

288 stamodel

function [str,ierror]=stamodel(str)

h
h
o
h
o
h
h
b
h
h
b

PURPOSE: given a structure with a nonstationary model, it obtains a
stationary model.

The model is assumed to be in echelon form. The stationary model is
also in echelon form, but it imposes less constraints. The
constraints are equal to those of the MA part.

USAGE: str=stamodel(str)

where: str = a structure containing the model information

RETURNS: str = the structure with the invertible model

289 sucdm

f
h
h
b
h
h
h
h
h
h
b
o
h
h
/.
.
/.
/.
/.

unction [X,Z,G,W,T,H,ins,ii,strc,ferror] = sucdm(comp,y,Y,stra,npr)

sk ok ok ok ok sk sk sk ok ok ok ok sk sk s oo o o o sk sk s o ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk s sk ok o sk sk sk ok ok kokokokok ok ok ok ok sk ok sk sk ok ok ok ok ok
PURPOSE: this function sets up a state space model given a structure
containing information about the components of a canonical
decompostion model. It returns a structure containing the model
information. The canonical decomposition model is

y_t = Y_t*beta + p_t + s_t + i_t,

where Y_t is a vector of regression variables, p_t is the canonical
trend-cycle, s_t is the canonical seassonal and i_t is the canonical
irregular component.

USAGE: [X,Z,G,W,T,H,ins,ii,strc,ferror] = sucdm(comp,y,Y,stra,npr)
Inputs:

comp = a structure with the following fields:

.ptnum = a polynomial containing the trend-cycle numerator
.ptden = a polynomial containing the trend-cycle denominator
.ptnur = number of unit roots in ptden

212

h
h
h
h
h
h
h
h
h
b
h
h
o
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
b
h
h
b
h
o
h
h
h
h
b
h

Outputs:

.ptvar
.stnum
.stden
.stnur

.stvar

.rt
.rtvar

.itvar

.sigmaa

y
Y

stra

npr

a positive number containing the variance of the
trend-cycle innovations

a polynomial containing the seasonal numerator

a polynomial containing the seasonal denominator
number of unit roots in stden

a positive number containing the variance of the
seasonal innovations

a polynomial containing the transitory component
a positive number containing the variance of the
transitory component innovations.

a positive number containing the variance of the
irregular component

a positive number containing the variance of the
series model innovations.

an (n x 1) matrix containing the data

an (n x nbeta) matrix containing the regression
variables

a structure, given as output by function
suvarmapqPQ

number of forecasts

X,2,G,W,T,H,ins,ii are the matrices and initial conditions
information corresponding to the state space model

y_t = X_txbeta + Z_t*alpha_t + G_t*epsilon_t
alpha_{t+1}= W_t*beta + T_t*alpha_t + H_t*epsilon_t,

where epsilon_t is (0,sigma”2I),

with initial state

alpha_1= c + W_Oxbeta + a_1 + A_1xdelta

where ¢ is (0,Omega) and delta is (0,kI) (diffuse).
More specifically,

X

mH QN =

BEP R g

(p x nbeta) matrix

can be []

empty matrix

(p x nalpha) matrix

(p x nepsilon) matrix
(nalpha x nalpha) matrix
(nalpha x nepsilon) matrix

213

h
h
h
o
h
h
h
h
h
h
h
h
h
h

ins: an nalpha x (cc+cwO+cal+ccal) matrix containing the initial
state information, according to array i below

ii :a 1 x 4 array containing 4 integers, ii=[cc cw0 cal
ccall], where
cc = nalpha if ¢ is not missing (0 if ¢ missing)
cwO0 = number of columns in W_0 (0 if W_O missing)
cal =1 if a_1 is not missing (0 if a_1 missing)
ccal = number of columns in A_1 (0 if A_1 missing)

Other outputs:

strc = a structure with the following fields:
.stra

.X,.2,.G,.W,.T,.H, .ins and .ii

. comp

290 sucdmpbp

function [X,Z,G,W,T,H,ins,ii,strc,ferror] = sucdmpbp(comp,compf,y,Y,...

h
2
h
o
h
h
h
b
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

stra,npr)

sk ok ok ok ok sk sk ok ok ok ok ok sk sk s oo o o o sk sk ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk s s s sk ok sk sk ko kokokokok ok ok ok ok ok ok sk ok ok ok ok ok
PURPOSE: this function sets up a state space model given a structure
containing information about the components of a canonical
decompostion model, where the trend-cycle is further decomposed into

a smooth trend and a cycle by means of the application of a band-pass
filter. See "The Use of Butterworth Filters for Trend and Cycle
Estimation in Economic Time Series", G\’{o}mez, V. (2001), Journal of
Business and Economic Statistics, 19, 365-373. It returns a structure
containing the model information. The canonical decomposition model is

y_t = Y_t*beta + p_t + s_t + i_t,

where Y_t is a vector of regression variables, p_t is the canonical
trend-cycle, s_t is the canonical seassonal and i_t is the canonical
irregular component. The trend-cycle is further decomposed as

p_t = ps_t + c_t,

where the models of ps_t and c_t are given by the parameters of p_t
and the parameters of the filter.

USAGE: [X,Z,G,W,T,H,ins,ii,strc,ferror] =
sucdmpbp (comp, compf ,y,Y,stra,npr)

214

h
h
h
h
h
h
h
h
h
h
h
h
o
h
h
h
b
h
h
h
b
h
h
h
h
h
h
h
b
h
h
b
h
b
h
h
o
h
h
h
h
b
h

Inputs:
comp
.ptnum
.ptden

.ptnur
.ptvar

.stnum
.stden
.stnur

.stvar

.rt
.rtvar

.itvar

.sigmaa

.phi
compf
.num
.den
.Alpha
.sa
.Di

.Thetac

.Lambda

stra
npr

Outputs:

a structure with the following fields:

a polynomial containing the trend-cycle numerator
a polynomial containing the trend-cycle
denominator

number of unit roots in ptden

a positive number containing the variance of the
trend-cycle innovations

a polynomial containing the seasonal numerator

a polynomial containing the seasonal denominator
number of unit roots in stden

a positive number containing the variance of the
seasonal innovations

a polynomial containing the transitory component
a positive number containing the variance of the

transitory component innovations.

a positive number containing the variance of the
irregular component

a positive number containing the variance of the
series model innovations.

a polynomial containing the regular phi

structure with the following fields
polynomial containing the filter numerator
polynomial containing the filter denominator
polynomial containing the filter Alpha
number, filter sa

positive integer, filter Di

number, the frequency, divided by pi, of gain
.5 in the But. sine/tangent filter.

a positive number, filter Lambda

PP PP PP P

an (n x 1) matrix containing the data

an (n x nbeta) matrix containing the regression
variables

a structure, given as output by function
suvarmapqPQ

number of forecasts

X,2,G,W,T,H,ins,ii are the matrices and initial conditiomns
information corresponding to the state space model

215

yA y_t = X_txbeta + Z_t*alpha_t + G_t*epsilon_t

% alpha_{t+1}= W_t*beta + T_t*alpha_t + H_t*epsilon_t,

b

% where epsilon_t is (0,sigma”2I),

A

yA with initial state

A

yA alpha_1= c + W_Ox*beta + a_1 + A_1lxdelta

b

% where ¢ is (0,Omega) and delta is (0,kI) (diffuse).

pA More specifically,

% X a (p x nbeta) matrix

b it can be []

b W an empty matrix

% Z a (p x nalpha) matrix

b G a (p x nepsilon) matrix

yA T an (nalpha x nalpha) matrix

% H : an (nalpha x nepsilon) matrix

yA ins: an nalpha x (cc+cwO+cal+ccal) matrix containing the initial
/A state information, according to array i below

yA ii :a 1 x 4 array containing 4 integers, i=[cc cw0 cal
% ccall, where

% cc = nalpha if ¢ is not missing (0 if c¢ missing)
pA cw0 = number of columns in W_0 (0 if W_O missing)
b cal =1 if a_1 is not missing (0 if a_1 missing)
% ccal = number of columns in A_1 (0 if A_1 missing)

A
% Other outputs:

A strc = a structure with the following fields:
h .stra

Y X,.Z,.G,.W,.T,.H,.ins and .ii

pA .comp

b .compf

291 sucdmpbst

function [X,Z,G,W,T,H,ins,ii,strc,ferror] = sucdmpbst(comp,compf,y,Y,...
stra,npr)

%t ke ot ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok sk sk ok sk sk sk sk sk s e ok ok ok ok sk sk ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok sk sk ok ok ok ok
% PURPOSE: this function sets up a state space model given a structure

% containing information about the components of a canonical

% decompostion model, where the trend-cycle is further decomposed into

216

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
b
h
b
h
h
o
h
o
h
h
h
h
h
b
h
h
h
b
o
h
h
h
h
h
h

a smooth trend and a cycle by means of the application of a low-pass
filter of the Butterworth sine or tangent type. See "The Use of
Butterworth Filters for Trend and Cycle Estimation in Economic Time
Series", G\’{o}mez, V. (2001), Journal of Business and Economic
Statistics, 19, 365-373. It returns a structure containing the model
information. The canonical decomposition model is

y_t = Y_txbeta + p_t + s_t + i_t,

where Y_t is a vector of regression variables, p_t is the canonical
trend-cycle, s_t is the canonical seassonal and i_t is the canonical
irregular component. The trend-cycle is further decomposed as

p_t = ps_t + c_t,

where the models of ps_t and c_t are given by the parameters of p_t and
the parameters of the filter.

USAGE: [X,Z,G,W,T,H,ins,ii,strc,ferror] =

sucdmpbst (comp, compf,y,Y,stra,npr)
Inputs:
comp = a structure with the following fields:
.ptnum = a polynomial containing the trend-cycle numerator
.ptden = a polynomial containing the trend-cycle
denominator
.ptnur = number of unit roots in ptden
.ptvar = a positive number containing the variance of the
trend-cycle innovations
.stnum = a polynomial containing the seasonal numerator
.stden = a polynomial containing the seasonal denominator
.stnur = number of unit roots in stden
.stvar = a positive number containing the variance of the
seasonal innovations
.rt = a polynomial containing the transitory component
.rtvar = a positive number containing the variance of the
transitory component innovations.
.itvar = a positive number containing the variance of the
irregular component
.sigmaa = a positive number containing the variance of the
series model innovations.
.phi = a polynomial containing the regular phi
compf = a structure with the following fields

217

h
h
h
o
h
h
h
h
h
h
h
b
o
h
o
h
h
h
h
h
b
h
h
o
h
o
h
h
h
h
h
b
h
h
h
h
o
h
h
h
h
h
h

.num = a polynomial containing the filter numerator
.den = a polynomial containing the filter denominator
.Alpha = a polynomial containing the filter Alpha
a number, filter sa

a positive integer, filter Di

a

.sa =
.Di =

.Thetac = a number, the frequency, divided by pi, of gain
.5 in the But. sine/tangent filter.

.Lambda = a positive number, filter Lambda

y = an (n x 1) matrix containing the data

Y = an (n x nbeta) matrix containing the regression
variables

stra = a structure, given as output by function
suvarmapqPQ

npr = number of forecasts

Outputs:

X,2,G,W,T,H,ins,ii are the matrices and initial conditiomns
information corresponding to the state space model

y_t = X_t*xbeta + Z_t*alpha_t + G_t*epsilon_t
alpha_{t+1}= W_t*beta + T_t*alpha_t + H_t*epsilon_t,

where epsilon_t is (0,sigma~2I),
with initial state
alpha_1= ¢ + W_Oxbeta + a_1 + A_lxdelta

where ¢ is (0,Omega) and delta is (0,kI) (diffuse).

More specifically,

X (p x nbeta) matrix

can be []

empty matrix

(p x nalpha) matrix

(p x nepsilon) matrix

(nalpha x nalpha) matrix

: (nalpha x nepsilon) matrix

ins: an nalpha x (cctcwO+cal+ccal) matrix containing the initial
state information, according to array i below

ii : a 1 x 4 array containing 4 integers, i=[cc cw0 cal
ccal], where

o H QN =
5P g”

218

% cc = nalpha if ¢ is not missing (0 if c¢ missing)

yA cw0 = number of columns in W_0 (0 if W_O missing)
pA cal =1 if a_1 is not missing (0 if a_1 missing)
% ccal = number of columns in A_1 (0 if A_1 missing)

/A
% Other outputs:

A strc = a structure with the following fields:
h .stra

Y X,.Z,.G,.W,.T,.H,.ins and .ii

pA .comp

b .compf

292 sumpol

% This function sums two polynomials A and B, possibly of different
% degrees. The polynomials are assumed to be in reversed order, that is
hAx) = A(D)*x"(p-1) + A(2)*x"(p-2) + ... + A(p-1)*x + A(p)

293 susmspbp

function [np,X,Z,G,W,T,H,ins,ii]=susmspbp(compbp,x,pfix,pvar,xf,...

yA stordt,conc,n,r,1)

Of sk sk sk ok o ok sk sk o o o ok sk sk o o o ok sk ok o s o ok sk sk o sk o ok sk sk sk o o sk sk sk o o ok sk sk o o o ok sksk ok o o sk sk sk o sk ok skok ok ok o ok
% Function to set up the state space model corresponding to the

% structural model

b

/A y_t = mu_t + epsilon_t,

b

% where

b

b mu_{t+1} = mu_{t} + beta_{t} + zeta_{t}

b beta_{t+1}
h

% plus a band-pass filter, applied as described in "The Use of

% Butterworth Filters for Trend and Cycle Estimation in Economic Time
% Series", G\’{o}mez, V. (2001), Journal of Business and Economic

% Statistics, 19, 365-373. This model is used in the paper "Monthly US
% Business Cycle Indicators: A new Multivatiate Approach Based on a

% Band-pass Filter", Marczak and G\’{o}mez, Empirical Economics, 52,

% 1379-1408.

b

% INPUTS:

beta_{t} + eta_{t},

219

b

o
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
h
h
b
o
b
o
h
b
h
h
h
h
h
h
o
h
o
h
b

pfix
pvar
xf
stordt
conc

o}

OUTPUTS:
np

array
array
array
array
array
index
out

numbe
numbe
numbe

numbe

with estimated parameters

with fixed parameter indices

with variable parameter indices

with fixed parameters

with indices for standard deviations

for the standard deviation to be concentrated

r of variables in the data matrix y

r of slope factors
f of quarterly series

r of rows of matrix Tp (see below)

the following arguments are for generated the state space

model
X

ins:

ii

an
a
it
an
a
an
a
an
mat
an
it
an
an
an
an
an na
initi
a
ccal
cc
cwO
cal
ccal

(n*p x nbeta) matrix containing the X_t matrices;
(p x nbeta) if it is time invariant;

can be []

(n*p x nalpha) matrix containing the Z_t matrices;
(p x nalpha) matrix if it is time invariant

(n*p x nepsilon) matrix containing the G_t matrices;
(p x nepsilon) matrix if it is time invariant
(n*nalpha x nbeta) matrix containing the W_t
rices;

(nalpha x nbeta) matrix if it is time invariant;
can be []

(n*nalpha x nalpha) matrix containing the T_t %
(nalpha x nalpha) matrix if it time invariant
(n*nalpha x nepsilon) matrix containing the H_t %
(nalpha x nepsilon) if it is time invariant

lpha x (cc+cwO+cal+ccal) matrix containing the

al state information, according to array i below
1 x 4 array containing 4 integers, i=[cc cwO cal
], where

= nalpha if ¢ is not missing (0 if c¢ missing)
number of columns in W_0 (0 if W_O missing)

1 if a_1 is not missing (0 if a_1 missing)
number of columns in A_1 (0 if A_1 missing)

220

matrice:

matri

294 suusm

function [str,ferror] = suusm(comp,y,Y,npr)

b
h
h
h
h
h
h
h
h
h
h
b
h
h
h
h
h
h
o
h
o
h
b
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
h

sk ok ok ok ok sk ok ok sk sk sk sk sk sk sk s s o o o sk sk ok ok ok ok ook ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk s sk ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok
PURPOSE: this function sets up a univariate structural model given a
structure containing information about the components. It returns a
structure containing the model information. The model is

y_t = Y_t*beta + p_t + s_t + u_t + v_t + e_t,

where Y_t is a vector of regression variables, p_t is the trend, s_t
is the seassonal, u_t is the cyclical, v_t is the AR, and e_t is the
irregular component. This function allows for other values of freq
besides 1, 4 and 12.

Note that freq is a field of structures comp and datei. It is also the
number of seasons. Therefore, it determines the seasonal component.
USAGE: [str,ferror] = suusm(comp,y,Y,npr)

where structure comp has the following fields:

.level = a 1 x 3 dimensional array such that level(l) is a
code (see below *), level(2) is the standard error
of the level and level(3) = NaN means the standard
error is to be estimated, =0 it is fixed

.slope = a 1 x 3 dimensional array such that slope(l) is a

code (see below *), slope(2) is the standard error

of the slope and slope(3) = NaN means the standard

error is to be estimated, =0 it is fixed
.seas = a 1 x 3 dimensional array such that seas(1l) is a
code (see below *), seas(2) is the standard error
of the seasonal and seas(3) = NaN means the
standard error is to be estimated, =0 it is fixed
a 1 x 3 dimensional array such that cycle(1l) is a
code (see below *), cycle(2) is the standard error
of the cycle and cycle(3) = NaN means the standard
error is to be estimated, =0 it is fixed
(only if field .cycle is present) a 2 x 2 array
containing the first row the two cycle parameters
(rho and freqc) and the second row a NaN or zero
for each cycle parameter. Each NaN means that the
correspondig cycle parameter is to be estimated
and each zero means that it is fixed
(only if field .cycle is present) a 1 x 2 array
such that cycleb(1) and cycleb(2) contain the end

.cycle

.cyclep

.cycleb

221

h
b

b .ar

b

A

h

yA .arp

h

b

h

b

h

b

b .irreg
b

b

h

A .conout
h

b

h

b

h

b

A

b

A

h

A

h

b

yA .freq
b .datei
yA .sqrtfil
b

A

b

% y

T Y

b

yA npr

points of the frequency interval in which the
cycle is supposed to be defined.

a 1 x 3 dimensional array such that ar(l) is a
code (see below *), ar(2) is the standard error of
the ar component and ar(3) = NaN means the standard
error is to be estimated, =0 it is fixed

(only if field .ar is present) a 2 x k array, where
k is the order of the autoregressive, containing
the first row the autoregressive parameters and the
second row a NaN or zero for each autoregressive
parameter. Each NaN means that the correspondig
autoregressive parameter is to be estimated and
each zero means that it is fixed

a 1 x 3 dimensional array such that irreg(l) is a
code (see below *), irreg(2) is the standard error
of the irregular and irreg(3) = NaN means the
standard error is to be estimated, =0 it is fixed
’level’ if the standard error of the level is
concentrated out

’slope’ if the standard error of the slope is
concentrated out

’seas’ if the standard error of the seasonal

is concentrated out

’cycle’ if the standard error of the cycle is
concentrated out

’ar’ if the standard error of the ar component is
concentrated out

’irreg’ if the standard error of the irregular is
concentrated out

If .conout is not input, the program will determine
the biggest variance.

number of observations per year

calendar structure (output of function cal)

0, use ordinary two-stage Kalman filter for
estimation

1, use square root version (specially for long
series)

data vector

matrix for regression variables. It contains the
stack of the Y_t matrices.

number of forecasts

% ___

components:

% * codes for the

222

% level = -1 constant

b 1 stochastic

b 2 Butterworth tangent

% slope = -1 constant

A 1 stochastic

yA seas = -1 fixed dummy seasonality

b 1 stochastic dummy seasonality
h 2 trigonometric seasonality

b 4 Butterworth tangent

yA cycle = 1 structural model cycle

b 2 Butterworth sine cycle

% irreg = 1 stochastic

b ar = k autoregressive component of order k

h

e

% RETURNS: str = a structure containing the following fields
b

b matrices according to the model

h

pA y_t = X_txbeta + Z_t*alpha_t + G_t*epsilon_t

yA alpha_{t+1}= W_t*beta + T_t*alpha_t + H_txepsilon_t

b

% where epsilon_t is (0,sigma”2I),

b

b with initial state

b

b alpha_1= c + W_O*beta + a_1 + A_lxdelta

h

% where c is (0,Omega) and delta is (0,kI) (diffuse)

yA More specifically:

pA .X : an (n x nbeta) matrix containing the X_t matrices;
% a (1 x nbeta) if it is time invariant;

b it can be []

% .Z : an (n x nalpha) matrix containing the Z_t matrices;
% a (1 x nalpha) matrix if it is time invariant

b .G : an (n x nepsilon) matrix containing the G_t matrices;
% a (1 x nepsilon) matrix if it is time invariant

/A .W : an (n*nalpha x nbeta) matrix containing the W_t

pA matrices;

/A an (nalpha x nbeta) matrix if it is time invariant;
yA it can be []

pA .T : an (n*nalpha x nalpha) matrix containing the T_t % mat:
yA an (nalpha x nalpha) matrix if it time invariant

223

h

T

T

.ins

.trend
.slope
.seas
.cycle
.x11

.x12

.arp
.irreg
.conc

XV
.xf
.pvar
.pfix
.stord

.freq :

.datei
.comp

.H : an (n*nalpha x nepsilon) matrix containing the H_t %
an (nalpha x nepsilon) if it is time invariant

an nalpha x (cctcwO+cal+ccal) matrix containing the initial

state information, according to array i below

a 1 x 4 array containing 4 integers, i=[cc cw0 cal ccall,

where

cc = nalpha if ¢ is not missing (0 if ¢ missing)

cw0 = number of columns in W_O (0 if W_O missing)
cal =1 if a_1 is not missing (0 if a_1 missing)
ccal = number of columns in A_1 (0 if A_1 missing)

trend code

slope code

seasonal code

cycle code

lower bound of the frequency interval in which the
cycle is supposed to be defined

upper bound of the frequency interval in which the
cycle is supposed to be defined

AR code

irregular code

index for the parameter that is concentrated out
(see description below *)

vector with all parameters (see description below *x)
vector with parameters to be estimated

vector with fixed parameters

array with variable parameter indices

array with fixed parameter indices

array containing parameter indices (see description below
*kk)

frequency of the data

calendar structure

structure comp (input to suusm)

* One of the standard deviations is concentrated out and, therefore,
is not estimated. The field conout contains information about this
standard deviation. The user can select this standard deviation or
the program can do it automatically instead. The biggest variance
should be selected.

** we put in x the parameters of the model, except the one that is
concentrated out, in the order:
1 - irregular standard deviation

224

ik

- level standard deviation

- slope standard deviation

- seasonal standard deviation

- autoregressive standard deviation

- cycle standard deviation

,8 — cycle parameters, rho and frequency
,10,.. autoregressive parameters

=
© N O O W N

% *** stord is an index such that its i-th element indicates to which

yA component (according to the ordering above) belongs the i-th

pA element of x.

Uk ok ok ok ok ok ok ok ok ok ok o ok oK ok K ok o oK K oK KoK oK oK KoK K K K K KK K K KK K KoK oK oK oK oK o oK ok oK ok K ok K

295 suusmm

function [str,ferror] = suusmm(comp,y,Y,npr)

%t ke ot ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok ok sk sk sk sk s o o ok ok ok ok sk sk ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok sk sk ok ok ok ok
% PURPOSE: this function sets up a univariate structural model with

% complex seasonal patterns given a structure containing information

% about the components. It returns a structure containing the model

% information. The model is

h

% y_t = Y_t*beta + p_t + s_t + u_t + v_t + e_t,

h

% where Y_t is a vector of regression variables, p_t is the trend, s_t
% is the seassonal, u_t is the cyclical, v_t is the AR, and e_t is the
% irregular component. This function allows for several patterns of

% seasonality. That is, s_t = \sum_{j=1}"{N} s_{t}"j, s_{t}"j =

% \sum_{i=1}"{m_j}rs_{i,t}"j, n_j is the period of s_{t}"j, m_j is the
% number of harmonics of s_{t}"j and

h

% [s_{i,t}"] 1 [cos(2\pi i/n_j) sin(2\pi i/n_j)] [G_{i,t} 1]
%h [s_{i,t} " {* j}]= [-sin(2\pi i/n_j) cos(2\pi i/n_j)]1 + [j~*_{i,t} 1.

S —
% USAGE: [str,ferror] = suusmm(comp,y,Y,npr)
% where structure comp has the following fields:

yA .level = a 1 x 3 dimensional array such that level(l) is a
% code (see below *), level(2) is the standard error
% of the level and level(3) = NaN means the standard
% error is to be estimated, =0 it is fixed

yA .slope = a 1 x 3 dimensional array such that slope(l) is a

225

h
h
h
o
h
h
h
h
h
b
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
h
h
h
h
b
b
h
h
h
h

.seasp

.cycle

.cyclep

.cycleb

.ar

.arp

.irreg

.conout

code (see below *), slope(2) is the standard error
of the slope and slope(3) = NaN means the standard
error is to be estimated, =0 it is fixed

a cell array whose elements are 1 x 4 dimensional
arrays defining the seasonal patterns. The first
pair in each array, [per_j,m_jl, are the period
and the number of harmonics. The third element in
the array is the standard error of that seasonal
component and the fourth element in the array =
NaN means the standard error is to be estimated,
=0 it is fixed

a 1 x 3 dimensional array such that cycle(1l) is a
code (see below *), cycle(2) is the standard error
of the cycle and cycle(3) = NaN means the standard
error is to be estimated, =0 it is fixed

(only if field .cycle is present) a 2 x 2 array
containing the first row the two cycle parameters
(rho and freqc) and the second row a NaN or zero
for each cycle parameter. Each NaN means that the
correspondig cycle parameter is to be estimated
and each zero means that it is fixed

(only if field .cycle is present) a 1 x 2 array
such that cycleb(1) and cycleb(2) contain the end
points of the frequency interval in which the
cycle is supposed to be defined.

a 1 x 3 dimensional array such that ar(l) is a
code (see below *), ar(2) is the standard error of
the ar component and ar(3) = NaN means the standard
error is to be estimated, =0 it is fixed

(only if field .ar is present) a 2 x k array, where
k is the order of the autoregressive, containing
the first row the autoregressive parameters and the
second row a NaN or zero for each autoregressive
parameter. Each NaN means that the correspondig
autoregressive parameter is to be estimated and
each zero means that it is fixed

a 1 x 3 dimensional array such that irreg(l) is a
code (see below *), irreg(2) is the standard error
of the irregular and irreg(3) = NaN means the
standard error is to be estimated, =0 it is fixed
’level’ if the standard error of the level is
concentrated out

’slope’ if the standard error of the slope is

226

h
h
h
o
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
h
h
h
o
h
o
h
h
h
h
h
h
h
h
o
h
o
h
h
h
h
h
h

concentrated out

’seasp’ if the standard error of the
is concentrated out

’cycle’ if the standard error of the
concentrated out

’ar’ if the standard error of the ar
concentrated out

’irreg’ if the standard error of the
concentrated out

seasonal
cycle is
component is

irregular is

If .conout is not input, the program will determine

the biggest variance.

.sqrtfil = 0, use ordinary two-stage Kalman filter for
estimation
1, use square root version (specially for long
series)

y = data vector

Y = matrix for regression variables. It contains the
stack of the Y_t matrices.

npr = number of forecasts

* codes for the components:

level = -1 constant
1 stochastic
2 Butterworth tangent
slope = 1 stochastic
cycle = 1 structural model cycle
2 Butterworth sine cycle
irreg = 1 stochastic
ar = k autoregressive component of order k

RETURNS: str = a structure containing the following fields

matrices according to the model

y_t = X_t*beta + Z_t*alpha_t + G_t*epsilon_t

alpha_{t+1}= W_t*beta + T_t*alpha_t + H_t*epsilon_t

where epsilon_t is (0,sigma”2I),
with initial state

alpha_1= c + W_Oxbeta + a_1 + A_lx*delta

227

h
h
h
h
h
h
h
h
h
h
h
h
o
h
h
h
b
h
h
h
h
h
h
o
h
o
b
h
h
b
h
b
h
h
h
h

h
h
h
h
h
h

.ins

.trend :
.slope

.Seas

.cycle

.x11

.x12

.arp

.irreg :

.conc

XV

.xf
.pvar
.pfix

where ¢ is (0,0Omega) and delta is (0,kI) (diffuse)
More specifically:

X

T

.H :

where

cc
cwO
cal
ccal

an
a
it
an
a
an
a
an

an
it
an
an
an
an

(n x
(1 x

nbeta) matrix containing the X_t matrices;
nbeta) if it is time invariant;

can be []

(n x
(1 x
(n x
(1 x

nalpha) matrix containing the Z_t matrices;
nalpha) matrix if it is time invariant
nepsilon) matrix containing the G_t matrices;
nepsilon) matrix if it is time invariant

(n*nalpha x nbeta) matrix containing the W_t
matrices;
(nalpha x nbeta) matrix if it is time invariant;

can be []

(n*nalpha x nalpha) matrix containing the T_t % mat:
(nalpha x nalpha) matrix if it time invariant

(n*nalpha x nepsilon) matrix containing the H_t % n:
(nalpha x nepsilon) if it is time invariant

an nalpha x (cc+cwO+cal+ccal) matrix containing the initial

state information, according to array i below

a 1 x 4 array containing 4 integers, i=[cc cwO cal ccall,

= nalpha if ¢ is not missing (0 if c¢ missing)
number of columns in W_O (0 if W_O missing)
1 if a_1 is not missing (0 if a_1 missing)
number of columns in A_1 (0 if A_1 missing)

trend code

slope code

seasonal code

cycle code
lower bound of the frequency interval in which the
cycle is supposed to be defined

: upper bound of the frequency interval in which the
cycle is supposed to be defined
AR code

irregular code

index for the parameter that is concentrated out

(see description below *)
: vector with all parameters (see description below **)

vector with parameters to be estimated

: vector with fixed parameters
array with variable parameter indices
array with fixed parameter indices

228

T

T

h
o
h
h
h
h
h
h
h
h
o
h
o
h
h

296

.stord

.freq :
.datei
. comp

* One of th

array containing parameter indices (see description below
*kk)

frequency of the data

calendar structure

structure comp (input to suusm)

e standard deviations is concentrated out and, therefore,

is not estimated. The field conout contains information about this

standard
the progr
should b

deviation. The user can select this standard deviation or
am can do it automatically instead. The biggest variance
e selected.

** we put in x the parameters of the model, except the one that is

concentr
1_

2_

3_
4,...3+N -

4+N -
5+N -
6+N,7+N -
8+N,9+N, ..

***x stord i

ated out, in the order:

irregular standard deviation

level standard deviation

slope standard deviation

ith-seasonal standard deviation, where N = number of
seasonal patterns

autoregressive standard deviation

cycle standard deviation

cycle parameters, rho and frequency

autoregressive parameters

s an index such that its i-th element indicates to which

component (according to the ordering above) belongs the i-th
element of x.
ok ok ok ok ok ok ok K ok ok ok ok Kok ok ok Kok Kok Kok oK KKK KK KKK KK KKK KKK KR KR K ok K

suvarmapqPQ

function [str,ferror] = suvarmapqPQ(phi,th,Phi,Th,Sigma,freq)
O sk sk sk ok sk ok sk sk ok o sk o sk sk s o sk o ok sk sk o o s ok sk sk s o sk ok sk sk ok sk e ok sk sk sk s s ok ok sk ok sk ke ok sk sk sk o sk ok ok sk ok sk ok sk sk ok o

h
h
h
h
h
h
h
h

PURPOSE: se
frequency (
containing

USAGE: [str

where: ph
th

Phi

ts up a VARMA model given the matrix polynomials and the
number of observations per year). It returns a structure
the model information

,ferror] = suvarmaxpqPQ(phi,th,Phi,Th,Sigma,freq)
i = the regular AR matrix polynomial

= the regular MA matrix polynomial
i = the seasonal AR matrix polynomial

229

h
b
h
o
b
h
h
h
h
h
o
h
o
h
h
h
b
h
h
h
h
h
h
h
h
o
h
h
h
b
h
h
o
h
o
h
h
h
h
h
h
h
h

Th
Sigma
freq

the seasonal MA matrix polynomial
the innovations covariance matrix
number of observations per year

RETURNS: str

.Sigma:
.Lh:
.phin:
.Phin:
.thn:
.Thn:

.Lhn:

.nparm:
X1

LXV:
.xf:
.phirs:
.thrs:

z,T,H,G,X

a structure containing the following fields

: dimension of Y_t

: number of observations per year
i: phi(z) matrix polynomial

: theta(z) matrix polynomial

i: Phi(z"freq) matrix polynomial

: Theta(z"freq) matrix polynomial

innovations covariance matrix, where the element

(1,1) has been concentrated out of the likelihood

vech of the Cholesky factor of Sigma

phi(z) matrix polynomial, where each parameter to

estimate is replaced with NaN and each fixed parameter

is replaced with zero

Phi(z"freq) matrix polynomial, where each parameter to %

is replaced with zero

Theta(z"freq) matrix polynomial, where each parameter % e
is replaced with zero

phi(z) matrix polynomial, where each parameter to % estir
is replaced with zero

Lh vector, where each parameter to estimate is

replaced with NaN and each fixed parameter is replaced

with zero

: parameter vector, including fixed and variable

parameters

number of parameters

array of ones and zeros, where each one indicates a
parameter in x that is to be estimated and each zero
indicates a fixed parameter

array of parameters to estimate

array of fixed parameters

product of phi(z) and Phi(z"freq)

product of theta(z) and Theta(z"freq)

,W matrices of the state space model

Y_t = X_t*beta + Z_t*alpha_t + G_t*epsilon_t

alpha_{t+1}= W_t*beta + T_t*alpha_t + H_t*epsilon_t

where

epsilon_t is (0,sigma”2I),

230

yA
% with initial state

h

% alpha_1= ¢ + W_Oxbeta + a_1l + A_lx*delta

h

% where ¢ is (0,0Omega) and delta is (0,kI) (diffuse)

h

yA More specifically:

yA .Z: a (s x nalpha) matrix

yA T: a (nalpha x nalpha) matrix

pA H: a (nalpha x nepsilon) matrix

% .G: a (s x nepsilon) matrix

o X: []

h w: []

h

b Note: user can subsequently incorporate regression variables into
yA the state space model given by suvarmapgPQ by an appropriate
b specification of matrix X

% ___

297 suvarmapqPQe

function [str,ferror] = suvarmapqPQe(Lambda,alpha,betap,th,...
Th,Sigma,freq)

sk sk ok sk ok o sk sk o o sk ok o sk ok o ok ok ok o sk ok o o sk ok o K oK ok o K ok o sk ok o o ok ok o K ok ok sk ok o ok sk ok o K ok ok sk ok ok ok ok ok K ok ok

% PURPOSE: sets up a VARMA model given the matrix polynomials and the

% frequency (number of observations per year). It returns a structure

% containing the model information

e

% USAGE: [str,ferror] = suvarmaxpqPQ(phi,th,Phi,Th,Sigma,freq)

% where: Lambda = the regular AR matrix polynomial in ecf
% alpha = a matrix such that Pi = alphaxbetap

b betap = a matrix such that Pi = alphax*betap

% th = the regular MA matrix polynomial

b Th = the seasonal MA matrix polynomial

yA Sigma = the innovations covariance matrix

/A freq = number of observations per year

e
% RETURNS: str = a structure containing the following fields

h .S: dimension of Y_t
b .freq: number of observations per year
h .phi: phi(z) matrix polynomial

231

h
h
h
o
h
h
h
h
h
h
h
b
h
h
o
h
h
h
h
h
h
h
b
h
h
o
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

.th:
.Phi:
.Th:
.Sigma:

.Lh:
.phin:

.Phin:
.thn:
.Thn:

.Lhn:

.nparm:
X1

LXV:
.xf:

.phirs:

.thrs:

: number of unit roots in the model

: number of seasonal unit roots in the model (not used)

: parameter vector for betaor (the unit root part),

.nr
.ns
.xd

.nparmd:
.xid :

xvd :
xfd :

theta(z) matrix polynomial

Phi(z"freq) matrix polynomial

Theta(z"freq) matrix polynomial

innovations covariance matrix, where the element

(1,1) has been concentrated out of the likelihood

vech of the Cholesky factor of Sigma
phi(z) matrix polynomial, where each parameter to %
is replaced with zero

Phi(z"freq) matrix polynomial, where each parameter to 7%

is replaced with zero

Theta(z"freq) matrix polynomial, where each parameter %
is replaced with zero

phi(z) matrix polynomial, where each parameter to %

is replaced with zero

Lh vector, where each parameter to estimate is

replaced with NaN and each fixed parameter is replaced
with zero

: parameter vector, including fixed and variable

parameters

number of parameters

array of ones and zeros, where each one indicates a
parameter in x that is to be estimated and each zero
indicates a fixed parameter

array of parameters to estimate

array of fixed parameters

product of phi(z) and Phi(z"freq)

product of theta(z) and Theta(z"freq)

including fixed and variable parameters

number of parameters for the unit root part

array of ones and zeros, as in xi, for the unit root
part

array of parameters to estimate for the unit root part
array of fixed parameters for the unit root part

Z,T,H,G,X,W matrices of the state space model

Y_t = X_t*beta + Z_t*alpha_t + G_t*epsilon_t

alpha_{t+1}= W_t*beta + T_t*alpha_t + H_t*epsilon_t

where epsilon_t is (0,sigma”2I),

232

estir

estir

h
h
h
o
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h

with initial state
alpha_1= c + W_Oxbeta + a_1l + A_1xdelta
where ¢ is (0,0Omega) and delta is (0,kI) (diffuse)

More specifically:
.Z: a (s x nalpha) matrix
T: a (nalpha x nalpha) matrix
H: a (nalpha x nepsilon) matrix
.G: a (s x nepsilon) matrix
X: []
w: []

Note: user can subsequently incorporate regression variables into
the state space model given by suvarmapgPQe by an
appropriate specification of matrix X

298 sylvesterf

f
h
o
b
o
b
h

unction [Rd,fil,col] = sylvesterf(A, da, n, m, du);

Given A, a polynomial matrix with n rows, m columns and degree da,
this function computes its row-permuted Sylvester Matrix Rd. The
permutation is done using the kronecker square commutation matrix of
dimension n times dat+du+l Comm(n, da+dut+l) (Actually this matrix is
not computed and, equivalently but with fewer operations, the row
permutation is done by the permat routine)

299 sympmeq

function [X,ierror]=sympmeq(phi,Lp)

b
2
h
h
b
o
h
h
h

This function solves the symmetric polynomial matrix equation
X(z)phi’(z"{-1}) + phi(z2)X’(z"{-1}) = Lp(z,z"{-1}),

where Lp is a symmetric Laurent polynomial matrix of the form
Lp(z,z"{-1})= L’ _pz~{-p}+..... +L° _1z"{-1}+L_0+L_1z+...L_pz~p,

L_0 is a symmetric matrix, and p=degree(phi(z))= degree(X(z)).

Input: phi = [n,n,p+1] matrix containing the phi polynomial matrix
Lp [n,n,p+1] matrix containing L_O0+L_1z+...L_pz"p

233

% Output: X = [n,n,p+1l] matrix containing the solution X(z)
yA ierror = 0,1 a flag for errors in dimensions

300 tabla

function tabla(y,datei,info)

h

% This function produces a table for a time series
h

% Input arguments:

b y: the time series

pA datei: a structure containing the initial date

b info: a structure containing printing options,

% where

yA .fid: the device on which the table will be written

yA .fh: flag for header and years

pA .wd: format width

yA .nd: number of decimal points

pA .scale: =1 scale data if necessary

pA =0 do not scale data

h

/A Note: this routine can be used to print data without a header and
pA years in several columns using datei for the number of

/A columns.

% Example: datei=cal(1900,1,6) and info.fh=0 will print only the data
b with six columns. The year 1900 is immaterial here.

301 tasa

function yt=tasa(y,s)
ko sk koo sk ok ok ok sk ok sk ok ok ok sk ok ok ok sk ko ok sk kK ok sk K ook ko ok sk ko ok sk ok ok sk K ok kK ook ok ok

% This function computes growth rate of order s

T

% INPUTS:

yA y : data vector

% s : integer, order of the growth rate of y
h

% OUTPUT:

yA yt : growth rate of y of order s

234

302 tfeasy

function [out,ser] = tfeasy(y,x,freq,varargin)
ok ok ok ook ok ok ko sk ok ook K ok K ok ok ook K ok K ok K ook K ok K ok ok ok ok K ok K ok K ook K ok Kok K ok

h
h
h
h
h
h
o
h
h
h
h
h
h
h
h
h
h
o
h
2
h
b
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
h

EASY TRANSFER FUNCTION MODELING

USAGE :
out = tfeasy(y,x,freq,’optionl’,optionvaluel,’option2’,optionvalue?2,...)
INPUTS :
REQUIRED

y : (ly x 1) array containing the series;
x : (ly x ni) array containing the inputs
freq : data frequency (number of observations per year)

OPTIONS
’ [bg_year bg_per]’:

’lam’:
’[p dr ql’:
>[ps ds gs]’:

7S7:
>[dS gS]°:

’flagm’:
‘pfix’:
’viix’:

’fixdif’:
’autmid’:
)Y):
’rnamesrg’:

‘nlestim’:

(1 x 2) array containing the initial year and the
initial period. Default [2000 1]

data transformation (logs), = 0 logs, =1 no logs,

default -1 (test for logs)

(1 x 3) array containing the regular orders

default: [0 1 1]

(1 x 3) array containing the first seasonal orders

default: [0 1 1]

second seasonality. Default O

(1 x 2) array containing the second seasonal orders

default: [1 1]

flag for mean, =1 mean, =0, no mean, default O

It has not effect with automatic model
identification

index array for fixed parameters

array for fixed parameter values

flag for fixing the differencing degrees, =1

degrees are fixed, = O not fixed, default O
flag for automatic model identification, = 1,
perform automatic model identification, = 0, no

automatic model identification, default 1

array for regression variables, default []

string matrix for names of regression variables,
default []

flag for nonlinear estimation, = 1, nl estimation,
= 0, no nl estimation, default 1

235

h
h
h
o
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
h
h
h
o
h
o
h
h
h
h
h
h
h
h
o
b
o
h
h
h
b
h
h

‘mvx’:

‘npr’:
’olsres’:

out’:

‘omet’:

’CO’ :

’schr’:

’spl’:

’sp2’:
’trad’:

’tradval’:
’leapy’:
’easte’:

’durval’:
’sname’ :

’rnamesi’:

’rnamesiv’:

flag for nl method, = 1, exact maximum likelihood,

= 0, unconditional least squares, default 1

number of forecasts, default O

flag for OLS residuals, = 1, OLS residuals are used,
= 0, uncorrelated residuals (transformation of OLS
residuals) are used, default O

: flag for printing in an external file, = 1, printing

= 0, no printing, default 1

: flag for graphics, = 1, plot series, = 0, no plots

= 2, plots are saved but not displayed, = 3, plots
are both saved and displayed, default O

out = 1 perform outlier detection

= 0 do not perform outlier de

omet = 1 use exact ML for model estimation

= 0 use Hannan-Rissanen

critical value for outlier detection

if negative, it is computed depending on the

sample size

critical value for outlier detection used in the log
test and automatic model identification, default
C0=2.6 + log(log(ny)) (ny = series length)

= 0 outliers of type AO and TC are considered, =1
outliers of type A0, TC and LS are considered,
default 1

(spl,sp2) span for outlier detection, default spl =1
default sp2=ny, where ny = series length

= 0 no trading day effect, = 1 TD effect, = -1, test
for TD effect, default O

possible number of TD variables (0 is also a value),
default [1 6]

= 0, no leap year effect, = 1 LP effect, = -1, test
for LP effect, default O
= 0 no Easter effect, = 1 Easter effect, = -1, test

for Easter effect, default O

possible days previous to Easter (0 is also a value)
default [4 6]

character array containing the series name

default seriesl

flag for names of the input variables, = 1, names are
given by the user, =0, names are given by the program,
default O

character array containing the names for the input

236

h
h
h
o
h
h
h
h
h
h
h
h
o
h
o
h
h
h
h
h
b
h
b
o
h
o
h
h
h
h
h
h
h
h
o
h
o
h

h
h
h

’prelivar’:
’delay’:
‘ma’:

Yar’:

’inc’:

’modinput’:

’modpred’ :

’tfident’:
’backwd’:

’Cb’:

’nlagtf’:

‘maxndtf’:

‘maxddtf’:

variables, default []

flag for preliminary VAR analysis, = 1, perform VAR
analysis, = 0, no VAR analysis, default O

array containing the filter delays, if tfident=0 and
prelivar=0

array containing the filter ma degrees, if tfident=0
and prelivar=0

array containing the filter ar degrees, if tfident=0
and prelivar=0

= 0, the initial states in the filter equations to obtain
the filtered variables are equal to zero (not estimated)
= 1, the initial states in the filter equations are
estimated

structure containing the input models in subfields
phi, theta and sigma2 if subfield mod = 1; default
mod O. The input model is used to compute the mse,
not the input forecasts. It should contain the
nonstationary part.

structure containing the input forecasts in subfield
pred. If npr > O, the user should provide the input
forecasts as an (npr x 1) array for each input,
whether there is a model for the input or not

flag for automatic TF identification, default O

flag for backward elimination in transfer function
identification, default O

critical value for backwar elimination in transfer
function identification, default 2.

number of lags for automatic model identification. If
negative, the program will compute the number of lags.
default, -1

maximum degree for numerator in transfer function
identification

maximum degree for denominator in transfer function
identification

OUTPUT : a structure, the output of function arimaestni

Examples:

[out,ser]=tfeasy(y,x,freq,’tfident’,1,’out’,1)
out=arimaeasy(y,x,freq,’[p dr ql’,[0 1 1],’leapy’,-1,’tfident’,1)

237

303

tfivparm

function parm= tfivparm(Y,parm)

b
h
h
h
h
h
h
o
h
2
h
h
h
b
h
h
h
h
o
h
2
h
b

this function adds to the structure parm the fields ninput and inputv

Input arguments:
: a matrix containing the input variables

Y

parm :

s:
S:
.p:
.ps:
.q:
.gs:
.qS:
.dr:
.ds:
.dsS:

.pvar:
.pfix:

a structure where

seasonality
second seasonality
AR order

order
order
order
order
order
order
order

of
of
of
of
of
of
of

array
array

the AR of order s

the regular MA

the MA of order s (1 at most)

the MA of order S (1 at most)

regular differencing

differencing of order s

differencing of order S

containing the indices of variable parameters
containing the indices of fixed parameters

Output arguments:

parm: the input structure with the added fields
.ninput: number of inputs

.inputv: array containing the input variables

304

function Y = trade(Iy,Im,N,Itrad,Ntrad,Yh,Mq)
% this function generates the trading day variables and the leap year

h
h
h
h

trade

% variable. It works until 2100.
input variables Iy : the initial year
Im : the initial period
N : the length of the desired vector
Itrad : the number of trading day variables

h
h
h
h
h
h

=1 one trading day variable (sundays
and saturdays are the holidays)

=2 like 1, but the leap year variable
is added

=6 six trading day variables are

238

h
h
h
o
h
h
h
h
h
h
h
h

considered
=7 like 6, but the leap year variable
is added

Ntrad : a flag for additional holydays (=1
yes, =0 no)

Yh : the variable where the additiomnal
holidays are stored

Mq : the series frequency (=12 for

monthly, =4 for quarterly)

output variables Y : N x Itrad array containing the

305

function oparm=tradid(y,Y,infm,parm,ser,ols,a,tradval,fid,fmarqdt)

h
h
h
h
h
h
o
h
h
h
h
h
h
h
h

h
o
h
h
h
h
h
h
h
h

trading day variables

tradid

this function automatically estimates the number of TD variables for
an ARIMA model with TD correction

Input arguments:

y: vector
Y: matrix

infm

.tr

.tol:
.jac:

.maxit:
.nul:
.prt:

containing the data
containing regression variables
structure containing function names and optimization
options
a function to evaluate the vector ff of individual functions
such that ff’*ff is minimized
>0 x is passed from marqdt to f but not passed from f to
marqdt
=0 x is passed from marqdt to f and passed from f to marqdt
a parameter used for stopping
=1 evaluation of jacobian and gradient at the solution is
performed
=0 no evaluation of jacobian and gradient at the solution
is performed
maximum number of iterations
initial value of the nu parameter
=1 printing of results
=0 no printing of results

parm: astructure containing model information, where
.s: seasonality
.S: second seasonality

239

% .p: AR order

% .ps: order of the AR of order s

% .q: order of the regular MA

% .qs: order of the MA of order s (1 at most)

% .qS: order of the MA of order S (1 at most)

% .dr: order of regular differencing

% .ds: order of differencing of order s

% .dS: order of differencing of order S

% .pvar: array containing the indices of variable parameters
% .pfix: array containing the indices of fixed parameters

% ser : a structure containing the series parameters (the ones

yA specified by the user in the spec file and the default ones)
% ols : =1, perform OLS, = 0, use the Durbin Levinson algorithm in
A the HR method

% a : an integer, the degree of the AR approximation in the first
b step of the Hanna-Rissanen method.

% tradval: an integer array containing the possible numbers of TD

A variables (0 is also a value)

% fid : the number of the externmal output file

% fmarqdt: a parameter for the estimation method
b 1 Levenberg-Marquardt method
b 0 Lsgnonlin (Matlab)

306 trtout

function trtout(fid,iout,ser)
pA

% This function prints the results of outlier detection

307 tskfsribf

function [e,f,hd,Md,A,P,nel=tskfsribf(y,X,Z,G,W,T,H,ins,i,chb)
%
pA

yA This function applies the tskf-sribf to the series y for

yA prediction and likelihood evaluation corresponding to the model
t

b y_t = X_t*beta + Z_t*alpha_t + G_t*epsilon_t

% alpha_{t+1}= W_t*beta + T_t*alpha_t + H_t*epsilon_t

h

yA where epsilon_t is (0,sigma”2I),

h

240

h
h
h
h
h
h
h
h
h
h
h
h
o
h
o
h
h
h
h
h
b
h
h
o
h
o
h
b
h
h
h
h

b
o
h
b
h
h
h
h
h
b

with initial state

alpha_1= c + W_Oxbeta + a_1 + A_1xdelta

where ¢ is (0,Omega) and delta is (0,kI) (diffuse). A single
collapse is applied to get rid of the diffuse component.

Input parameters:

y:
X

ins:

an

:an
a
it

(n x p) matrix of observations;

(n*p x nbeta) matrix containing the X_t matrices;

(p x nbeta) if it is time invariant;

can be []

(n*p x nalpha) matrix containing the Z_t matrices;
(p x nalpha) matrix if it is time invariant

(n*p x nepsilon) matrix containing the G_t matrices;
(p x nepsilon) matrix if it is time invariant
(n*nalpha x nbeta) matrix containing the W_t

matrices;

an
it
: an
an
:an
an

(nalpha x nbeta) matrix if it is time invariant;
can be []

(n*nalpha x nalpha) matrix containing the T_t %
(nalpha x nalpha) matrix if it time invariant
(n*nalpha x nepsilon) matrix containing the H_t %
(nalpha x nepsilon) if it is time invariant

an nalpha x (cc+cwO+cal+ccal) matrix containing the
initial state information, according to array i below

ca

1 x 4 array containing 4 integers, i=[cc cwO cal

ccal], where

cc
cwO
cal
ccal

= nalpha if ¢ is not missing (0 if c¢ missing)
= number of columns in W_0 (0 if W_O missing)
1 if a_1 is not missing (0 if a_1 missing)
number of columns in A_1 (0 if A_1 missing)

chb= 1 compute hb and Mb
O do not compute hb and Mb

Output parameters:

e
f

hd

A

: vector containing the stack of the standardized residuals
: factor by which the residuals are to be multiplied

for minimization of the nonlinear sum of squares

: the beta estimate
Md :

the Mse of hd

: the estimated augmented state vector at the end of

filtering

241

matrice:

matri

yA P : the Mse of A at the end of filtering
pA ne : vector containing the stack of the observation numbers
b corresponding to the standardized residuals

308 tsplot

function tsplot(y,cstruc,varargin)
% PURPOSE: time-series plot with dates and labels
S —

% USAGE: tsplot (y,cstruc,begp,endp,vnames,ydigit)

/A or: tsplot(y,cal_struc,vnames), which plots the entire series
pA with the default date format

b or: tsplot(y,cal_struc,vnames,ydigit), which plots the entire
yA series with the date format ydigit

/A or: tsplot(y,cal_struc), entire series with no variable names
yA or: tsplot(y,cal_struc,[],ydigit), entire series with the date
yA format ydigit but no variable names

b

% where: y = matrix (or vector) of series to be plotted

% cstruc = a structure returned by cal()

pA begp = the beginning observation to plot (optional)

b endp = the ending observation to plot (optional)

pA vnames = a string matrix of names for a legend (optional)

% e.g. vnames = [’y ’,

yA ’x1 >, NOTE: fixed width

/A ’x2 ’, like all MATLAB

yA ‘cterm’]; strings

pA ydigit = a string specifying the date format (optional)

b e.g. ydigit = ’yyyy’

T ydigit = ’mmmyyyy’

O
hoe.g. cstr = cal(1970,1,12);
b tsplot(y,cstr); would plot all data

% or: tsplot(y,cstr,ical(1981,1,cstr),ical(1981,12,cstr)),
yA which would plot data for 1981 omnly

% Original version of tsplot written by:
% James P. LeSage, Dept of Economics

% University of Toledo

% 2801 W. Bancroft St,

% Toledo, OH 43606

242

% jpl@jpl.econ.utoledo.edu

b

% Modified by Martyna Marczak, 20.09.2012
% Department of Economics (520G)

% University of Hohenheim

% Schloss, Museumsfluegel

% 70593 Stuttgart, Germany

% Phone: + 49 711 459 23823

% E-mail: marczak@uni-hohenheim.de

309 tukhan

function [w, m] = tukhan(n, m)

T

/A This function computes the weights for the
yA Tukey-Hanning window

b

T INPUTS:

pA n : lentgh of the series

yA m : window lag size

o

h OUTPUTS:

pA w : weights of the Tukey-Hanning window
b m : window lag size

310 updatef

function [f,fc]=updatef(ff,ffc)

b

% function to update the vector whose nonlinear sum of squares is

% minimized. It is stored in the form f=(£f"(1/n))*(2"(fc/n)) to avoid
% underflow and overflow.

311 updbic

function [bicm,oparm]=updbic(yd,beta,s,S,p,ps,q,qs,9S,0ls,a,bicm,oparm)
o

% this function updates the BIC criterion of an ARMA model after

% checking for stationarity and invertibility

h

% Input arguments:

243

mailto:marczak@uni-hohenheim.de
mailto:jpl@jpl.econ.utoledo.edu

% yd : an (n x m) matrix containing the series, yd(:,1), and an (n x
yA m-1) matrix of regression variables if m > 1.

% beta : an m-1 vector containing the OLS estimators if m > 1, empty if
pA m=1

h s : seasonality

% S : second seasonality

hp : degree of AR polynomial

% ps : degree of AR seasonal polynomial

hq : degree of MA polynomial

% gs : degree of MA seasonal polynomial

% qs : degree of MA second seasonal polynomial

% ols : =1, perform OLS, = 0, use the Durbin Levinson algorithm

% a : an integer, the degree of the AR approximation in the first
b step of the Hanna-Rissanen method.

% bicm : the previous bic criterion

% oparm: a structure where

% .s: seasonality

% .S: second seasonality

% .9S: order of the MA of order S (1 at most)

% .dr: order of regular differencing

% .ds: order of differencing of order s

% .dS: order of differencing of order S

% .p: AR order

% .ps: order of the AR of order s

% .q: order of the regular MA

% .qs: order of the MA of order s (1 at most)

% .pvar: array containing the indices of variable parameters
% .pfix: array containing the indices of fixed parameters

312 usmeasy

function [out,ser] = usmeasy(y,freq,varargin)

Yok ok ok ok ok ok ok o ok oK oK oK K oK KoK oK K K K K oK oK oK o oK o oK ok oK o ok ok oK ok oK ok K ok oK ok K ok K ok K ok K ok o ok K ok K ok K o
b EASY STRUCTURAL MODELING

b

T USAGE :

% out = usmeasy(y,freq,’optionl’,optionvaluel,’option2’,optionvalue?2,...)

T

o INPUTS :

R —

b REQUIRED

% y ¢ (ly x 1) array containing the series;

244

h
h
h

h
h
h
h
h
h
h
h
o
h
o
h
h
h
h
h
b
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
o
h
h
b
h
h
h

OPTIONS

’[bg_year bg_per]’: (1 x 2) array containing the initial year and the
initial period. Default [2000 1]

’lam’: data transformation (logs), = 0 logs, =1 no logs,
default -1 (test for logs)

’Y’: (n x nY) array for regression variables, where n is

the series length plus the number of forecasts and
nY is the number of regression variables, default []

Ycomp : a cell array, containing the assignment of each

regression variable to a component. Possible values
are ’level’,’slope’,’seas’,’cycle’, ’ar’ and ’irreg’

’rnamesrg’: string matrix for names of regression variables,

default []

’W’: (n*nalpha x nbeta) array for the transition equation
of the state space model, where n is the series
length plus the number of forecasts, nalpha is the
state vector length and nbeta is the number of
intervention effects to be modeled this way, default

(]
’level’: (1 x 3) array
’slope’: (1 x 3) array
’cycle’: (1 x 3) array
’cyclep’: (2 x 2) array
parameters of
’cycleb’: (1 x 2) array
’seas’: (1 x 3) array

’ar’: (1 x 3) array
component

’arp’: (2 x p) array
parameters

to
to
to
to

specify
specify
specify
specify

the cycle

to
to
to

to

specify
specify
specify

specify

the
the
the
the

the
the
the

the

>conout’:’level’ if the standard error

concentrated out
’slope’ if the standard error of the slope is

concentrated out
’seas’ if the standard error of the seasonal

is concentrated out
’cycle’ if the standard error of the cycle is
concentrated out
’ar’ if the standard error of the ar component is
concentrated out
’irreg’ if the standard error of the irregular is

245

level
slope
cycle
rho and alpha

cyclical interval
seasonal component
autoregressive

autoregressive

of the level is

h
h
h
o
h
h
h
h
h
h
h
h
o
h
o
h
h
h
h
h
b
h
h
o
h
o
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
h

’sqrtfil’:
‘nlestim’:

‘npr’:
’olsres’:

concentrated out

If .conout is not input, the program will determine
the biggest variance.

=1 use the square root Kalman filter, =0 do not use
it, default O

flag for nonlinear estimation, = 1, nl estimation,
= 0, no nl estimation, default 1

number of forecasts, default O

flag for OLS residuals, = 1, OLS residuals are used,
= 0, uncorrelated residuals (transformation of OLS
residuals) are used, default O

: flag for printing in an external file, = 1, printing

= 0, no printing, default 1

: flag for graphics, = 1, plot series, = 0, no plots

= 2, plots are saved but not displayed, = 3, plots
are both saved and displayed, default O

character array containing the series name

default seriesl

* codes

for the components:

1 stochastic
Butterworth tangent

1 stochastic
= -1 fixed dummy seasonality

stochastic dummy seasonality

trigonometric seasonality

Butterworth tangent

Butterworth sine cycle

1
2
4
= 1 structural model cycle
2
1 stochastic

k

autoregressive component of order k

level = -1 constant
slope = -1 constant
seas
cycle
irreg =
ar =
OUTPUT
Example:

[out,ser]=usmeasy(y,freq,’pr’,1,’gft’,1, ’sname’, ‘myusmseries’,...

246

h
b

’level’,[1 0.1 NaN],’slope’,[1 0.1 NaN],’seas’,...
[2 0.1 NaN],’irreg’,[1 0.1 NaN]);

313 usmestim

function [result,str] = usmestim(y,str)

h
h
h
h
h
o
h
h
h
h
h
h
h
h
h
h
o
h
h
h
h
h
h
h
h
o
h
o
h
h
h
h
h
h
o
b

This function estimates a univariate structural model using the exact
maximum likelihood method.

Inputs:
y: matrix containing the output series
str: a structure containing the initial model information. It
should be input as well as output because the concentrated
parameter can change. The concentrated parameter should be the
greatest variance. The program performs a preliminary
estimation to check it.
Outputs:
result: a structure with the following fields
.xvf : estimated parameters
.xf : vector of fixed parameters
.sigma2c: the estimated standard error of the parameter that has
been concentrated out
.Pevf: prediction error variance
.SPevf: square root of Pevf

.tv : t-values of the estimated parameters

.e : vector of standardized residuals at the end of estimation
@’ _2xy)

.S8s : residual sum of squares (e’*e)

.F: vector of nonlinear functions whose sum of squares is

minimized at the end of estimation
.Ff : the product F’*F
.h : vector of estimated regression estimates

=

: matrix of mse of h

.A : estimated state vector, x_{t|t-1}, obtained with the

Kalman filter at the end of the sample

.P: Mse of A

.tvr : t-values of the estimated regression parameters

.ser : standard errors of the estimated regression parameters
.ferror : flag for errors

str : the same structure as input. It should be present because

247

T

314

function

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
o
h
b
h
h
h
h
h
b
h
h
o
h
o
h
h
h
h
h
h
o
h

the concentrated parameter may change

usmestimm

[result,str] = usmestimm(y,str)

This function estimates a univariate structural model with complex
seasonal patterns using the exact maximum likelihood method.

Inputs:

y: matrix containing the output series
str: a structure containing the initial model information. It
should be input as well as output because the concentrated
parameter can change. The concentrated parameter should be the
greatest variance. The program performs a preliminary
estimation to check it.

Outputs:

result: a structure with the following fields

.xvf
.xf
.sigma2c:

.Peve:

.SPevf:
tv
.e

.Ss
.F

== b

.P
.tvr
.ser

.ferror
str

estimated parameters
vector of fixed parameters
the estimated standard error of the parameter that has
been concentrated out
prediction error variance
square root of Pevf
t-values of the estimated parameters
vector of standardized residuals at the end of estimation
Q> _2%y)
residual sum of squares (e’*e)
vector of nonlinear functions whose sum of squares is
minimized at the end of estimation
the product F’x*F
vector of estimated regression estimates

: matrix of mse of h

estimated state vector, x_{t|t-1}, obtained with the
Kalman filter at the end of the sample

Mse of A

t-values of the estimated regression parameters

standard errors of the estimated regression parameters
flag for errors

the same structure as input. It should be present because
the concentrated parameter may change

248

315 usmestni

function outa = usmestni(dbname,ser)

b
h
h
h
h
o
h
o
h
h
h
h
h
h
h
h
h
h
o
h
2
h
b
h
h
h
h
o
h
o
h
o
h
h
h
h
h
h
h
h

function to identify, estimate and forecast an ARIMA model for one
series. The series may have up to two seasonalities. The ARIMA model
is of the form:

phi(B)*phi_s(B"s)*phi_S(B~S)*(delta*delta_s*delta_S*y_t -mu) =
th(B)*th_s(B"s)*th_S(B"S)*a_t

In the subdirectory spec, there is a specification file where all the
options for the ARIMA model are defined and returned in the structue
ser. The name of this file is given in function arimaestos and passed
to this function.

These options include, log transformation criteria, automatic
identification of ARMA model and differencing operators, automatic
specification of trading day, Easter effect and leap year (for
quarterly and monthly series only), outlier search and forecasting,
among other things.

No automatic model identification is performed for the second
seasonality (S). This part must be entered by the user. Automatic
model identification is performed for the regular and the first
seasonal part. Output is written in an external file in the
subdirectory results.

INPUTS:
dbname : name of the series
ser : a structure, containing the instructions for this function
fidr : an integer, corresponding to the output file
ii : an integer, corresponding to the series currently handled.
OUTPUTS:
outa : a structure containing model information for the input

with fields:
title: a string with the name of series
nziyip: a 1 x 3 array with number of obs., initial year, initial per.
freq: number of seasons
orig: original series
model: structre with model information. It contains the following
fields
lam: flag for logarithmic transformation, = 0, take logs, =1,
do not take logs

249

h
h
h
o
h
h
h
h
h
b
h
h
o
h
o
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
b
h
b
b
h
o
h
h
h
h
h
h

ins:

i:
resinf:
sconp:
StochCc:
StochSCc:
oStochCc:

oStochSCc:
Cc:

SCc:
oCc:
oSCc:
npr:
Xp:
Wp:
pry:
Spry:
alpr:
malpr:

salpr:
opry:
0Spry:
oalpr:
osalpr:
ser:
result:

xvf:

xf:

e:

Ss:

Ff:
sigma2c:

oA = QN X

X matrix
Z matrix
G matrix
W matrix
T matrix
H matrix

in
in
in
in
in
in

the
the
the
the
the
the

state
state
state
state
state
state

space
space
space
space
space
space

form
form
form
form
form
form

ins matrix for the initial conditions

i array for the initial conditions
structure containing residual information
residual standard error
matrix containing the
matrix containing the
matrix containing the
original scale
matrix containing the
the original scale
matrix containing the

effects

matrix containing the
matrix containing the
matrix containing the
number of forecasts

matrix containing the
matrix containing the

forecasts

mse of the forecasts
matrix containing the forecasts of the state vector
three dimensional array containing each of the covariance

matrices of alpr
matrix containing the mse of alpr

stochastic
mse of the
stochastic

mse of the

components

mse of Cc
Cc in the original scale
mse of the oCc

components
stochastic components
components in the

stochastic components in

including deterministic

forecasts of X
forecasts of W

forecasts in the original scale
mse of the forecasts in the original scale
matrix containing the alpr in the original scale
matrix containing the mse of oalpr

the input structure
a structure containing estimation results. It has
the following fields:
array containing the
array containing the
array containing the
residual sum of squares

the product F’*F

estimated parameters
fixed parameters
residuals

standard error of the parameter concentrated out of the

250

h
h
h
h
h
h
h
h
h
h
h

h
h
o

316

likelihood

Pevf: prediction error variance
SPevf: square root of Pevf
tv: t-values of the estimated parameters
se: standard errors of the estimated parameters
.F: vector of nonlinear functions whose sum of squares is
minimized at the end of estimation
h: vector of regression parameters
M: mse of h
A: Augmented state vector at the end of filtering
P: mse matrix of A at the end of filtering
olsres: OLS residuals
tvr: t-values of the regression parameters
ser: standard errors of the regression parameters
ferror: flag for errors
usmestos

function outa = usmestos(fname,fmeta)

h
h
h
h
h
h
h
h
h
b
h
h
o
h
o
h
h
h
h
h
h
h
h

Function
ARIMA or

INPUT
fname

fmeta :

OUTPUTS:
outa

title:
nziyip:
freq:

for automatic identification, estimation and forecasting of
transfer function models for one or several series

S:

If fmeta = O or absent, a string such that fname.m is a
matlab function in the spec subdirectory that returns the
structure ser. In this structure, instruction for this
function are given. If fmeta = 1, a string such that
fname.txt contains a list of names of matlab functions in
the spec subdirectory that will be treated sequentially.
= 0, fname.m is a matlab function in the spec subdirectory
that returns the structure ser; = 1, fname.txt is a file
that contains a list of matlab functions in the spec
subdirectory that will be treated sequentially. If not
input, the program sets by default fmeta = O,

a structure containing model information for the input

with fields:

a string with the name of series

a 1 x 3 array with number of obs., initial year, initial per.
number of seasons

251

h
b

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
b
o
h
h
h
h
h
h

orig: original series
model: structre with model information. It contains the following
fields

lam:

A = QN X

ins:

i:
resinf:
sconp:
StochCc:
StochSCc:
oStochCc:

oStochSCc:
Cc:

SCc:
oCc:
oSCc:
npr:
Xp:
Wp:
pry:
Spry:
alpr:
malpr:

salpr:
opry:
0Spry:
oalpr:
osalpr:
ser:
result:

xvf:

flag for logarithmic transformation, = 0, take logs, = 1,
do not take logs

X matrix in the state space form

Z matrix in the state space form

G matrix in the state space form

W matrix in the state space form

T matrix in the state space form

H matrix in the state space form

ins matrix for the initial conditions

i array for the initial conditions

structure containing residual information

residual standard error

matrix containing the stochastic components

matrix containing the mse of the stochastic components
matrix containing the stochastic components in the
original scale

matrix containing the mse of the stochastic components in
the original scale

matrix containing the components including deterministic
effects

matrix containing the mse of Cc

matrix containing the Cc in the original scale

matrix containing the mse of the oCc

number of forecasts

matrix containing the forecasts of X

matrix containing the forecasts of W

forecasts

mse of the forecasts

matrix containing the forecasts of the state vector
three dimensional array containing each of the covariance
matrices of alpr

matrix containing the mse of alpr

forecasts in the original scale

mse of the forecasts in the original scale

matrix containing the alpr in the original scale

matrix containing the mse of oalpr

the input structure

a structure containing estimation results. It has

the following fields:

array containing the estimated parameters

252

yA xf: array containing the fixed parameters

pA e: array containing the residuals

b Ss: residual sum of squares

% Ff: the product F’*F

% sigma2c: standard error of the parameter concentrated out of the
yA likelihood

/A Pevf: prediction error variance

yA SPevf: square root of Pevf

b tv: t-values of the estimated parameters

yA se: standard errors of the estimated parameters

% .F: vector of nonlinear functions whose sum of squares is
pA minimized at the end of estimation

pA h: vector of regression parameters

A M: mse of h

pA A: Augmented state vector at the end of filtering
b P: mse matrix of A at the end of filtering

pA olsres: OLS residuals

b tvr: t-values of the regression parameters

yA ser: standard errors of the regression parameters

yA ferror: flag for errors

317 var_est

function res

= var_est(y,nlag,test,x)

% PURPOSE: performs vector autogressive estimation

h
h
h
h
h
h
o
h
b
h
h
h
h
h
h
h
h

USAGE: res

where:

and returns a structure

= var_est(y,nlag,test,x)
y = an (nobs x neqs) matrix of y-vectors

nlag = the lag length
test = a logical variable to perform additional tests
X = optional matrix of variables (nobs x nx)

(NOTE: constant vector automatically included)

RETURNS: a structure containing the following fields

.resid = residuals

.phi = VAR matrix polynomials. Signs are those of Box-Jenkins
(I-phi_1*z-phi_2%z~2 - ...-phi_p*z~p)

.phitv = matrix polynomials containing the t-values and
corresponding to the VAR matrix polynomials

.const = vector containing the estimated constant

.consttv = vector containing the t-values of the estimated

253

% constant

pA .betavar = matrix containing the estimated regression

% coefficients, beta

pA .tvvar = t-values of beta

b .sigmar = covariance matrix of residuals

yA .covvecbeta = covariance matrix of vec(beta)

yA .corvecbeta = correlation matrix of vec(beta)

yA .dusigmar = determinant of the maximum likelihood estimator of
pA the covariance matrix of residuals

h .11khd = log-likelihood

pA .aic = aic

pA .bic = bic

% .ssr(j) = Sum-of-squares residuals for each equation. Only
/A if test =1

pA .Rsqr(j) = R"2 for each equation. Only if test =1

b .SEeq(j) = Standard error of regression for each equation.
b Only if test = 1

% .Fstat(j) = F-statistic for each equation. Only if test = 1
yA .11khdeq(j) = log-likelihood for each equation. Only if test = 1
yA .aiceq(j) = aic for each equation. Only if test =1

yA .biceq(j) = bic for each equation. Only if test = 1

% .ftest(i,j) = Granger F-tests, only if test = 1

yA .fprob(i,j) = Granger marginal probabilities, only if test = 1
e

318 var_res

function resid = var_res(y,nlag,x)

% PURPOSE: performs vector autogressive estimation

pA and returns only residuals

Y

% USAGE: resid = var_res(y,nlag,x)

% where: y = an (nobs x neqgs) matrix of y-vectors

pA nlag = the lag length

b X = optional matrix of variables (nobs x nx)

yA (NOTE: constant vector automatically included)

S —
% RETURNS: a matrix of residuals (nobs x neqs)

% ___

254

319 varident

function [lg,initres] = varident(y,maxlag,minlag,prt,x)

% PURPOSE: performs likelihood ratio test, bic,

b and aic for var model to determine

yA optimal lag length
A —

% USAGE: [lagsopt,initres] = varident(y,maxlag,minlag,prt,x)

% where: y = an (nobs x negs) matrix of y-vectors

yA maxlag = the maximum lag length

pA minlag = the minimum lag length

b prt = flag for printing

% 0 = no, 1 = yes (default = 0)

/A X = optional matrix of variables (nobs x nx)

pA (NOTE: constant vector automatically included)

S
% RETURNS: lagsopt = the optimum number of lags

yA initres = an (maxlag x neqgs) matrix of initial residuals
yA corresponding to the estimated VARXs of order
% 1,2,..., maxlag.

% ___

320 varimass

function z=varimass(1,N,H,F,K,A,Sigma,Xi,stda,seed)

h

yA This function generates a VARMA model

/A It uses the state space representation

yA stda: standard deviation of the innovations in percentage of
pA the levels (default: 1

321 varmafil

function [z,rx1] = varmafil(u,F,H,B,D,kro,inc)

% This function filters the series u_t wusing the filter H(z) =

% omega(z)~(-1)*delta(z), where omega(z)=omega_0 + omega_l*z +

% omega_2*z"2 ++omega_q*z"q and delta(z) = I + delta_ 1%z + ... +
% delta_p*z p.

/A

% Input arguments:

% u: the input series

% F: a matrix

255

h
h
h
o
h
h
h
h
h
h
h
h
o
h
h

H: a matrix
B: a matrix
D: a matrix
kro: a vector containing the Kronecker indices of the filter H(z)
such that

x_{t+
z_{t}

inc:

Output

322

function [z,sz] = varmafilp(u,delta,omega,phi,th,Phi,Th,Sigma,freq)

This function filters the series u_t wusing the filter H(z) =

omega(z) ~(-1)*delta(z), where omega(z)=omega_0 + omega_l*z + omega_2*z"2
+tomega_qg*z"q and delta(z) = I + delta_l1*z + ... + delta_p*z"p. The
series u can follow a VARMApgPQ model or not. If it follows no model, it
is filtered using zeros as starting values. The series followed by u is

multiplicative seasonal of the form

h
h
h
h
h
h
h
h
h
b
h
h
o
h
o
h
h
h
h
h
b
h
h

13}

1 in
0 in

Fxx_{t} + Bxu_{t}
H*x_{t} + D*u_{t}

itial conditions, x_{1}, for the filter are estimated
itial conditions equal to zero

arguments:
z : the output series
rxl: a matrix containing the design matrix to estimate x_1

varmafilp

phi(B)Phi(B)u_t = th(B)Th(B)a_t

If there are unit roots, they are assumed to be in phi, Phi or delta

Input
u:
omega:
delta:
phi:

Phi:

th:

arguments:

the
the
and
the
and
the
and
the
and
the
and

input series

filter denominator, as a MATLAB polynomial in the scalar case,
as a matrix polynomial in the vector case

filter numerator, as a MATLAB polynomial in the scalar case,
as a matrix polynomial in the vector case

regular AR part, as a MATLAB polynomial in the scalar case,
as a matrix polynomial in the vector case

seasonal AR part, as a MATLAB polynomial in the scalar case,
as a matrix polynomial in the vector case

regular MA part, as a MATLAB polynomial in the scalar case,
as a matrix polynomial in the vector case

256

yA Th: the seasonal MA part, as a MATLAB polynomial in the scalar case,
yA and as a matrix polynomial in the vector case

% Sigma: the covariance matrix of the input innovations

% freq: the number of seasons

h

% Output arguments:

% z : the filtered series

% sz : the mse of z

323 varmapqPQ2ssm

function [phirs,thrs,H,F,G,J,ferror] = varmapqPQ2ssm(phi,th,Phi,Th,L,str)
% PURPOSE: given the matrix polynomials of a VARMA(p,q) (P,Q)_s model and
% the Cholesky factor of the innovations covariance, this function puts
% the model into the state space form

b x(t+1) = Fxx(t) + G*u(t)

% y(t) = Hxx(t) + J*u(t),

% where

% [-bphi_1 I00] [theta_1-phi_1*Psi0]
A [-bphi_2 01 . 0] [theta_2-phi_2%PsiO]
“F=101 ... oo e 1, G=1L . 1,
A [-bphi_{r-1> 0 0 I] [theta_{r-1}-phi_{r-1}*Psi0]
% [-bphi_r 00O0] [theta_r-phi_r*Psi0]
“H= [phi_0°{-1} 000], J= Psi_o,

% bphi_i = phi_i*phi_0"{-1} and phi~{-1}(z)*theta(z) = Psi_0 + Psi_1xz
%o+ Psi_2xz"2+ ...
h

%and computes the AR and MA matrix polynomials

% USAGE: [phirs,thrs,H,F,G,J,ferror] =

% varmapqPQ2ssm(phi,th,Phi,Th,L,str)

% where: phi = the regular AR matrix polynomial

b th = the regular MA matrix polynomial

pA Phi = the seasonal AR matrix polynomial

b Th = the seasonal MA matrix polynomial

yA L = the Cholesky factor of the innovations covariance
b matrix

yA str = a structure containing model information
S

e

% RETURNS: phirs = the overall AR matrix polynomial
yA thrs the overall MA matrix polynomial

257

yA H = a matrix of the state space form
b F = a matrix of the state space form
b G = a matrix of the state space form
pA J = a matrix of the state space form
b ferror = flag for errors
e
324 varmapqPQestim

function

b
h
b
h
h
o
h
b
h
h
h
b
h
h
h
h
o
h
h
h
h
h
h
h
h
o
b

325

function

h

[result,ferror] = varmapqPQestim(y,str,Y)

This function estimates a VARMA(p,q) (P,Q)_s model using the exact
maximum likelihood method.

Inputs: y: matrix containing the input series
Y: an (n*neqgs x nbeta) matrix containing the regression matrix
str: a structure containing the initial model information given
by function suvarmapqPQ.m

OQutput: .xvf
.xf

.sigma2c
.Sigmar

tv
.residexct

JEf

o

.P

.tvr:

.ferror

estimated parameters

vector of fixed parameters

concentrated parameter estimate

estimated exact covariance matrix of residuals
t-values of the estimated varma parameters

: matrix containing recursive residuals, only if Y is

empty

vector of standardized residuals at the end of
estimation (Q’_2xy)

vector of nonlinear functions whose sum of squares is
minimized at the end of estimation

vector of estimated regression estimates

: matrix of mse of h

estimated state vector, x_{t|t-1}, obtained with the
Kalman filter at the end of the sample

: Mse of A

vector of t-values for h
flag for errors

varmapqP Qestimd

[result,ferror] = varmapqPQestimd(y,str,Y,constant)

258

% This function estimates a VARMA model with unit roots parameterized in
% terms of the model for the ‘‘differenced’’ series using the exact

% maximum likelihood method.

t

h

% Inputs: y: matrix containing the input series

/A Y: an (n*neqs x nbeta) matrix containing the regression matrix
yA str: a structure containing the initial model information

% constant: =1 a constant should be included in the model for the

pA differenced series

b 0 no constant in the model for the differenced series

% Output: .xvf : estimated parameters

% .xf : vector of fixed parameters

b .sigma2c : concentrated parameter estimate

yA .Sigmar : estimated exact covariance matrix of residuals

b .tv : t-values of the estimated varma parameters

yA .residexct : matrix containing recursive residuals, only if Y is
/A empty

yA .e : vector of standardized residuals at the end of

b estimation (Q’_2*y)

yA .ff : vector of nonlinear functions whose sum of squares is
yA minimized at the end of estimation

yA .h vector of estimated regression estimates

% .H : matrix of mse of h

% .A : estimated state vector, x_{tlt-1}, obtained with the
% Kalman filter at the end of the sample

yA .P : Mse of A

% .tvr: vector of t-values for h

yA .ferror : flag for errors

326 varmapqPQestime

function [result,ferror] = varmapqPQestime(y,str,Y,constant)

2

% This function estimates a VARMA model with unit roots parameterized in
% terms of the model in error correction form using the exact

% maximum likelihood method.

2

h

% Inputs: y: matrix containing the input series

% Y: an (n*neqs x nbeta) matrix containing the regression matrix
yA str: a structure containing the initial model information

259

% constant: =1 a constant should be included in the model for the

h
h

differenced series
0 no constant in the model for the differenced series

% Output: a structure, result, with the following fields

h
h

.xvf : estimated parameters
.xf : vector of fixed parameters

yA .sigma2c : concentrated parameter estimate

h
h

.Sigmar : estimated exact covariance matrix of residuals
.tv : t-values of the estimated varma parameters

yA .residexct : matrix containing recursive residuals, only if Y is

h
h
h
h
o
h
h
h
h
h
h
h

327

function
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

empty
.e : vector of standardized residuals at the end of
estimation (Q’_2*y)
.ff : vector of nonlinear functions whose sum of squares is
minimized at the end of estimation
vector of estimated regression estimates
: matrix of mse of h
.A : estimated state vector, x_{tlt-1}, obtained with the
Kalman filter at the end of the sample
.P : Mse of A
.tvr: vector of t-values for h
.ferror : flag for errors

o

varmasim

[z,ferror]=varmasim(1,N,phi,th,stda,seed)

This function generates a VARMA model
It uses Akaike’s state space representation

Input parameters:

1: number of observations discarded at the beginning of the
series

N: number of observations of the simulated series

phi: AR matrix polynomial

th: MA matrix polynomial

stda: covariance matrix of the innovations (default: I)

seed: a number to start random normal generation

Output parameters:
z: the simulated series

260

A ferror: a flag for errors

328 varmaxgenid

function [order,kro] = varmaxgenid(y,x,seas,maxorder,hr3,ct,prt)

% PURPOSE: identifies a VARMAX model for the series y with inputs x.

% According to the sign of maxorder, it identifies:

% a) if maxorder > 0, a VARMAX model using the generic neighborhood and
pA ct = ’AIC’, ’BIC’ or ’HQ’.

% b) if maxorder = 0, a VARMAX(p,p,p) model using sequential LR tests.

% c) if maxorder < 0, a VARMAX(p,p,p) model using ct = ’AIC’, ’BIC’ or

pA "HQ’ .

% USAGE: [order,kro] = varmaxgenid(y,x,seas,maxorder,hr3,ct,prt)

% where: y = an (nobs x neqs) matrix of y-vectors

% X = matrix of input variables (nobs x nx)

pA (NOTE: constant vector automatically included)

yA seas = seasonality

b maxorder = >0, maximum order to estimate the McMillan degree
yA using the generic neighborhood and AIC, BIC, HQ.

yA = 0, estimate the order of the optimum VARMAX(p,p,p)
yA model by LR tests with maximum order obtained by

b the

yA program. In this case, input ct is ignored (it can be
b set to empty for example).

% <0, -maxorder is the maximum order to estimate the
% McMillan degree using equal K.i. and AIC, BIC, HQ.
/A hr3 = 1 perform only the first two stages of the HR method
pA 0 perform the three stages of the HR method

% ct = ’AIC’,’BIC’, ’HQ’

yA prt = 1 print results of the VARX, VARMAX(p,p,p) tests

yA and different criteria

Y

% RETURNS: order = the system order, that is, the McMillan degree

yA kro = the Kronecker indices

e

329 varmaxscmidn
function [order,kro,scm] = varmaxscmidn(y,x,seas,maxorder,hr3,prt)

% PURPOSE: identifies a VARMAX model based on scalar component models
% for the series y with inputs x. The series is assumed to follow an

261

% invertible but possibly nonstationary model.

% The scalar components are identified after a VARMAX(p,q,r) has been
% previously identified and estimated. The estimated max(p,q,r) is an
% estimate of the maximum Kronecker index.

% If maxorder is empty, the maximum order for the VARMAX(p,q,r) model is
% set equal to the order of a VARX approximation.

% If maxorder is positive, a VARMAX(p,q,r) model is estimated using

% maxorder as maximum for p, q and r.

% The procedure identifies the s.c._i, i, i=1,2,...,s, equation by

% equation. En each equation, first, the past innovations are replaced
% with the estimated innovations of the VARMAX(p,q,r) model of the

% first step. Then, a sequence of LR tests allows for the estimation of
% the s.c. of that equation.

Y

% USAGE: [order,kro,scm] = varmaxscmidn(y,x,seas,maxorder,hr3,prt)

% where: y = an (nobs x neqs) matrix of y-vectors

yA X = matrix of input variables (nobs x nx)

A (NOTE: constant vector automatically included)

yA seas = seasonality

pA maxorder = empty, use the order of a VARX approximation as

yA maximum order for the VARMAX(p,q,r) model to be

b identified.

9% >0, this maximum order is used as the maximum order
% for the VARMAX(p,q,r) model to be identified.

b hr3 = 1 perform only the first two stages of the HR method
yA 0 perform the three stages of the HR method

b prt = 1 print results of the VARX and VARMAX(p,p,p) tests
R

% RETURNS: order = the system order, that is, the McMillan degree

yA kro = the Kronecker indices

yA scm = an array containg the scalar component models

Y

330 varx_est

function res = varx_est(y,nlag,x,test,xx)
% PURPOSE: performs vector autogressive with exogenous inputs (VARX)

% estimation and returns a structure
S —

% USAGE: res = varx_est(y,nlag,x,test,xx)

% where: v = an (nobs x neqs) matrix of y-vectors
yA nlag = the lag length

262

h
h
h
h
h
h
h
h
h
h
h
h
o
h
o
h
h
h
h
h
b
h
h
o
h
h
h
h
h
h
h
b
h
h
h
h
o
b
h
h
h
h
h

X = matrix of input variables (nobs x nx)
(NOTE: constant vector automatically included)

Wt
L)
0

ct
o

= a logical variable to perform additional tests
optional matrix of variables (nobs x nxx)

RETURNS: a structure containing the following fields

.resid = residuals
.phi = VARX matrix polynomials corresponding to the outputs.
Signs are those of Box-Jenkins (I-phi_1*z-phi_2%z"2 -
...—phi_p*z~p)
.phitv = matrix polynomials containing the t-values and
corresponding to the output VARX matrix polynomials
.phix = VARX matrix polynomials corresponding to the inputs.

Signs are those of Box-Jenkins

(phix_0 -phix_1*z-

-phix_2xz"2 -...-phix_p*z~"p)

.phixtv

matrix polynomials containing the t-values and

corresponding to the input VARX matrix polynomials
.const = vector containing the estimated constant
.consttv = vector containing the t-values of the estimated

constant

.betava = matrix containing the estimated regression
coefficients, beta

.tvvar = t-values of beta

.sigmar = covariance matrix of residuals

.covvecbeta = covariance matrix of vec(beta)

.corvecbeta = correlation matrix of vec(beta)

.dusigmar = determinant of the maximum likelihood estimator of
the covariance matrix of residuals

.11khd = log-likelihood

.aic = aic

.bic = bic

.ssr(j) = Sum-of-squares residuals for each equation. Only
if test =1

.Rsqr(j) = R72 for each equation. Only if test =1

.SEeq(j) = Standard error of regression for each equation.
Only if test =1

.Fstat(j) = F-statistic for each equation. Only if test = 1

.11khdeq(j) = log-likelihood for each equation. Only if test = 1

.aiceq(j) = aic for each equation. Only if test =1

.biceq(j) = bic for each equation. Only if test = 1

.ftest(i,j) = Granger F-tests, only if test =
.fprob(i,j) = Granger marginal probabilities,

263

1
only if test =1

331 varx._res

function resid = varx_res(y,nlag,x)

% PURPOSE: performs vector autogressive with exogenous inputs (VARX)
% estimation and returns only residuals

e

% USAGE: resid = varx_res(y,nlag,x)

% where: y = an (nobs x neqs) matrix of y-vectors

yA nlag = the lag length

yA X = matrix of input variables (nobs x nx)

yA (NOTE: constant vector automatically included)

A —
% RETURNS: a matrix of residuals (nobs x negs)
S —

332 vec

unction v = vec(x)
% PURPOSE: creates a column vector by stacking columns of x

Y
% USAGE: v = vec(x)
% where: x = an input matrix

R
% RETURNS:
yA v = output vector containing stacked columns of x

e
% Written by KH (Kurt.Hornik@tuwien.ac.at) on 1995/05/08
% Copyright Dept of Probability Theory and Statistics TU Wien

% Modified by J.P. LeSage

333 vech

function v = vech(x)
% PURPOSE: creates a column vector by stacking columns of x
b on and below the diagonal

% USAGE: v = vech(x)
% where: x = an input matrix

% RETURNS:
% v

output vector containing stacked columns of x

264

mailto:Kurt.Hornik@tuwien.ac.at

% Written by Mike Cliff, UNC Finance mcliff@unc.edu
% CREATED: 12/08/98

334 vecparwr

function str = vecparwr(str)

% PURPOSE: given a structure of a VARMAX model in echelon form, forms a
% vector with the nonrestricted parameters and restricted parameters

Y

% USAGE: str = vecparwr(str)

% where: str = a structure containing the structure of the VARMAX
yA model in echelon form
S

% RETURNS: str = a structure containing the previous structure plus

/A a vector with the the nonrestricted parameters and

yA restricted parameters

% ___

335 vincovma

function [A,Sigma,Xi]=vincovma(F,K,stda)

2

h

yA This function computes the elements of the initial state vector
pA for the diffuse Kalman filter in ARIMA models

336 xmparm

function [xx,pvar,pfix,parm]= xmparm(ninput,x0,xm,xf,pvar,pfix,...

% nr,nlagtf,g,tford,parm,nreg)

h

% this function automatically identifies the input filters in a transfer
% function model using the LTF method. See Liu, L. M., and Hanssens, D.
% M. (1982), "Identification of Multiple{Input Transfer Function

% Models", Communications in Statistics, Theory and Methods, 11,

% 297-314.

o

% Input arguments:

% x0 : array containing the initial model parameters

265

mailto:mcliff@unc.edu

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
b
h
h
o
h
o
h
h
h
h
h
b
h
h
h
b
o
h

Xm
xf
pvar
pfix
nr
nlagt

tford :

parm :

s:
S:
.p:
.ps:
.q:
.gs:
.qS:
.dr:
.ds:
.ds:

: array

: array
: array
: array

containing the ARMA variable parameters

containing the ARMA fixed parameters

containing the indices of ARMA variable parameters
containing the indices of ARMA fixed parameters

: the number of ARMA variable parameters
f: the number of lags for the polynomial approximations to the
rational input filter expansions (see LTF method)
: array containing the estimated weigths of the polynomial
approximations to the rational input filter expansions (see
LTF method)

(ninput x 3) array containing for each input variable the
delay, the degree of the ma part, and the degree of the ar
part
a structure where
seasonality
second seasonality
AR order
order of the AR of order s
order of the regular MA
order of the MA of order s (1 at most)
order of the MA of order S (1 at most)
order of regular differencing
order of differencing of order s
order of differencing of order S

nreg: number of regression variables

Output arguments:

XX
pvar:
pfix:
parm:

.pvar
.pfix

.ar:

: an array containing the transfer function model parameters

an array containing the transfer function model variable parameters
an array containing the transfer function model fixed parameters

a structure containing the transfer function model information.

In addition to the input fields, it contains

: array containing the indices of variable parameters

: array containing the indices of fixed parameters

.ninput: number of inputs

.delay: array with the delays of the input filters

.ma: array with the ma parameters of the input filters

array with the ar parameters of the input filters

266

