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Abstract

To estimate the components in an unobserved ARIMA components model,
three different approaches can be used: Kalman filtering plus smoothing, Wiener-
Kolmogorov filtering and optimal smoothing. It is shown in the paper that the
three approaches are equivalent. As an application, it is shown that any of the
three approaches can be used to filter a series with the Hodrick-Prescott filter,
since this filter can be given a signal extraction interpretation.

Keywords: Kalman filter; Signal extraction; ARIMA components model; Smooth-
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1 Introduction and Summary

In order to simplify the exposition, we will suppose first a time series z
=(zi,.. . , ZN)' that has been generated by the signal-plus-noise model

zt = st + nt, (1)

where St is the signal, which in the examples that will interest us will be the
trend component, and nt is a white noise process independent of st. The
results obtained for model (1) will be extended later to the case in which st
can be decomposed in turn into several orthogonal components. We suppose
that all components follow ARIMA models with mean zero and autoregressive
polynomials, which include the roots of unit modulus, that are coprime. The
series zt follows then the ARIMA model implied by the components, the so-
called reduced form model.

To estimate the signal s± in (1), three different approaches, which will be
labeled A, B and C, can be considered.

A) Cast model (1) into state space form and apply any of the existing
algorithms based on the Kalman filter which can handle nonstationary
state space models, followed by a corresponding smoothing algorithm.
The proposed algorithm is a simple modification of the diffuse Kalman
filter of De Jong (1991), properly initialized.

B) Make assumption A of Bell (1984) and apply the Wiener-Kolmogorov
filter and Tunnicliffe Wilson's algorithm like in Burman (1980).

C) Apply penalized least squares smoothing, which can be described as
follows. Let a(B) = 1 + o.\B + • • • + a¿Bd be a polynomial in the the
backshift operator, Bkst = st-k, with all its roots on the unit circle,
which renders 5* stationary. Let further ut = a(B)st, t = d+ 1,..., JV,
u = («d+i,... , MJV)', Var(u) = Í) and Var(n4) = A in (1). Then, the
problem is minimize

5>, - st)
2 + AU'ÍTV

t=i
It is to be noted that the only approach that allows for the computation

of the mean squared errors (MSE) of the estimators is approach A. Using the



method of Gómez and Maravall (1996), approach B can also give the MSE.
However, approach A is more flexible and can be easily generalized to the
case where, for example, there may be missing observations in model (1),
where the results of approach B cannot be applied.

Among the existing approaches to handle nonstationary state space mod-
els there are two that deal with the problem in all its generality. These are
the Diffuse likelihood approach of De Jong (1991) and the marginal likeli-
hood approach of Ansley and Kohn (1985). De Jong (1991) proposed an
algorithm, which he called the Diffuse Kalman filter, hereafter referred to
as DKF, and Ansley and Kohn (1985) proposed a "modified Kalman filter".
This last filter was difficult to implement with existing software and was also
conceptually difficult. Recently, Koopman (1997) has proposed an algorithm
which is based on the idea of the modified Kalman filter, but is more efficient
and a lot simpler to implement. There are also smoothing algorithms corre-
sponding to the approaches of De Jong and Ansley and Kohn, called diffuse
smoother and modified smoother.

When the process zt is stationary and z = (21,..., 2jv)' is the observed
series, it is well known that applying the Kalman filter and a smoothing
algorithm to estimate the signal st in (1) is equivalent to first applying
the Wiener-Kolmogorov filter to obtain the estimator based on the doubly-
infinite sample and then projecting this estimator on the finite sample. This
last projection is tantamount to replacing the unkown values in the first
estimator with forecasts and backcasts. Bell (1984) proved that, under an
assumption which he called assumption A, the Wiener-Kolmogorov filter
could also be applied to a complete realization in the nonstationary case.
Assumption A of Bell (1984) is a usual one when forecasting with ARIMA
models, see Brockwell and Davis (1992), p. 317. However, to the best of this
author's knowledge, in the finite nonstationary situation, the equivalence
between Kalman filtering plus smoothing and Wiener-Kolmogorov filtering
plus Tunnicliffe Wilson's algorithm, applied like in Burman (1980), remains
an open question. In fact, the approach proposed by Burman (1980) lacked a
sound theoretical foundation and the results of Bell (1984) were not applica-
ble to finite nonstationary series. In this respect, Burridge and Wallis (1988)
even stated that Wiener-Kolmogorov filtering could only be used with sta-
tionary series and that for nonstationary series one should use the Kalman
filter.

According to Gersch and Kitagawa (1990), the use of approach C can be



traced back to Whittaker (1923). Whittaker suggested that the solution of
the minimization problem balance a trade-off of goodness of fit to the data
and goodness of fit to a smoothness criterion. The properties of the solution
are clear. If A = 0, st = zt and the solution is a replica of the observations.
As A becomes increasingly large, the smoothness constraint dominates the
solution. Whittaker left the choice of A to the investigator.

One example of approach C is the Bayesian method used in the program
BAYSEA, contained in the Fortran library TlMSAC-84, to decompose a time
series into several components. The method is based on Akaike (1980a,
1980b). Another example is the filter proposed by Hodrick and Prescott
(1980), hereafter referred to as HPF, where the particular values A = 1600,
0 = 7, and &(B] — V2, V = 1 — B, are proposed when it is used with
quarterly series. It is well known (see, for example, King and Rebelo, 1989),
that the HPF can be given a signal extraction interpretation, whereby it is
obtained as the filter that corresponds to the estimator of the signal st in
(1), under the assumption that st follows the model V2^ = bt and {bt} is a
white noise sequence with mean zero and variance 1, independent of the nÍ5

and Var(nt) = 1600. Since st and zt are nonstationary, under assumption
A of Bell (1984), the Wiener-Kolmogorov filter can be applied to a infinite
realization of zt to obtain the minimum mean squared error estimator st
of the signal st. The estimator st is given by an infinite symmetric filter
HHp(B,F)

oo

st = HHP(B, F)zt = vQzt + £ vk(B
k + Fk)zt, (2)

fe=i

where F is the forward operator, Fkzt = zt+k- The weights vt can be obtained
from the signal extraction formula

HHP(B, F] = 1/(1 + A(l - B)\l - F)2). (3)

The question then immediately arises as to whether the finite version of
the signal extraction estimator, which, intuitively, is obtained by replacing
in (2) the unknown zt with forecasts and backcasts, can be computed with
the approches A and B and if the results of the three approaches coincide.

The paper shows that, under the appropriate assumptions, the three ap-
proaches yield the same result. Details of the algorithms used for the three
approaches are given. In the case of approach A, a slight modification of



the DKF of De Jong (1991) is proposed which is numerically more stable.
The initialization of the algorithm is obtained by a simple generalization to
unobserved ARIMA components models of the initialization of Gómez and
Maravall (1994a). For approach B, a cascade implementation is proposed
instead of the parallel one used in Tunnicliffe Wilson's algorithm, which is
easier to implement and produces the same results. To implement approach
C, an efficient algorithm is proposed which uses the Kalman filter together
with the QR algorithm.

The structure of the paper is as follows. In Section 2, the three approaches
are described in detail and their equivalence is established. Also, the results
are extended to the case in which there are more than two components in
(1). In Section 3, an example is given of the application of the techniques
described in the paper to filtering economic time series with the Hodrick-
Prescott filter.



2 Equivalence of the Three Approaches

In order to prove the equivalence of the three approaches, we make the fol-
lowing assumptions. The signal st follows the ARIMA model (f)(B)a(B)st =
Os(B)bt, where the polynomial a(B) has all its roots on the unit circle and
degree of, the polynomial (¡)(B) has all its roots outside the unit circle and
and degree p, the polynomial 0S(B) has all its roots on or outside the unit
circle and degree qs, and the variables bt are uncorrelated with the nt. Also,
{bt} and {nt} are serially uncorrelated processes with mean zero, Var(&i) =
of and Var(ni) = a\. The model (1) is nonstationary if d > 0.

These assumptions imply that the process {zt} follows the so called
reduced form ARIMA model tf>(B)a(B)zt = 0(B)at, where the coefficients
in 0(B) and the variance of at are obtained from the equality 9(B)at =
9s(B)bt + (f>(B}a(B)nt. If zt is nonstationary, we further make assumption A
of Bell (1984).

2.1 Details of Approach A
Among the state space representations of ARIMA models, we select that of
Gómez and Maravall (1994a), which is an extension to nonstationary series
of the representation originally proposed by Akaike (1974) for ARMA models.

Letting r — max{p + d, qs + 1}, <f>*(B] = <j)(B}a(B} and defining <f>* = 0
when i > p + d, the state space representation for model (1) is given by

zt — H'xt + nt

xt+i = Fxt + Gbt+i,

where

F =

0
0

0

1
0

0

0
1

0

0
0

(4)

(5)

(6)

L-# -#_i -#_2 ... -ftj
xt = (st,st+1,t,...,8t+r-itty, H = (1,0,. . . ,0) ' , G = (1,$-,...#_!)' and
the t/>* weights are the coefficients obtained from if>*(B) = 0s(B)/<j>*(B) =
Y^o^iB*. The elements of the state vector are defined as s<+i,i = &t+i —
^>o&í+¿ V^&í+i, i — 1,..., r — I. They are the predictors of sí+¿ based
on the semi-infinite sample {sj : j < t}.



Since the process {st} follows an ARIMA model, proceeding like in Bell
(1984), it can be generated as linear combinations of some starting values
and elements of the differenced process ut = a(B}st. Let the starting values
be 8 = (si-d,..., SQ}'. Then, following Bell (1984), the st can be generated
from st = A'tS +£<=S&«t-i, where t > 0, l/a(B) = E£o&#¿ and the
At = (An, • • • , AM)' can be recursively generated from

At = (0 , . . . ,1 , . . . ,0 ) , i = l -d , . . . ,0 ,
At = —aiAt-i a<iAt-d, t > 0,

where for t = 1 — e ? , . . . , 0 the one is in the (t + d)-th position.
Like in Gómez and Maravall (1994a), p. 615, it can be shown that the

initial state vector x^ verifies x\ = AS + Sf, where A — [A\r.., Ar]', H is
the lower triangular matrix with rows the vectors (£?-i, £¿-2? • • • ? 1> 0 , . . . , 0),
j = 1,..., r, U = (ui, «2,1,..., ur>i)' and M¿,I = E(ui\ut :t <I),i>I.

In the previous expression for x\, 8 models uncertainty with respect to the
initial conditions and its distribution is unknown. Therefore, the ordinary
Kalman filter cannot be applied and some device has to be used to handle 6,
which can be considered as a vector of nuisance random variables. Kalbñeisch
and Sprott (1970) proposed several methods to eliminate the dependence of
the likelihood on nuisance parameters, which are also valid in the present
context. More specifically, the marginal likelihood, which is the likelihood
of a transformation of the data to eliminate the nuisance parameters, is the
approach proposed by Ansley and Kohn (1985). The Bayesian approach,
which consists of considering 6 diffuse, is the approach of De Jong (1991).

For algorithmical purposes, we will use the approach of De Jong (1991) in
this paper. Using the transition equation (5), we have the following lemma,
whose proof is straightforward and is omitted.

Lemma 1 Suppose that the series z = (zi,..., 2jv)' has been generated by
the state space model (4) and (5); where x\ = A6 + EU, as described earlier,
and assume that 8 is independent of the nt and the bt. Then, the following
representation holds

z = XS + e, (7)

where, partitioning X = (Xi,..., XN)' and e — (ei, . . . , CN)' conforming to
z = ( Z I , . . . , Z N ) ' , the X't and et, t = 1,...,JV ; can be obtained from the
recursions

Xt = H Jt, Jt+i = FJt,

8



with the initial condition J\ = A, and

€t = nt-\- H'r/t, j/t+i = Frit + Gbt+l,

with the initial condition r¡i = "BU. Besides, E(¿) = 0, and Cov(8, e) = 0.

Let Var(6í,nf)' = ofdiag(l, A), where A = 0^/of, and Var(e) = ofS in
(7). Following De Jong (1991), suppose that 8 is independent of the {bt} and
{n^}, has mean 0 and covariance matrix of (7, and take the limit C~l —*• 0 to
make it diffuse. Assuming normality in ni? bt and 8 and letting l(z) be the
log-likelihood of z in (7) it is shown in De Jong (1991) that, apart from a
constant, as C~l —> 0,

l(z}+l-\n\alC\-* - I^JV-iOM^ + lnlSl+lnlA-'E-1*!

+ (z-X8)'X-l(z-X8)/o-¡}, (8)

where 8 = (X'I^~1X)~1X'Ij~lz and the mean squared error (Mse) of 8 is
Mse(<$) = <r¿(A"/S~1A")~1. The limit expression in (8) is the diffuse log-
likelihood. The parameter of can be concentrated out of the diffuse log-
likelihood by replacing of in (8) with its maximum likelihood estimator of
= (z- X8)'Z-l(z - X8)/(N - d).

The previous result tells us that making 8 diffuse implies that (7) can
be considered as a generalized linear regression model (GLS), where 8 is the
vector of regression parameters and 8 and of are the GLS estimators.

One interesting point to note is that the diffuse log-likelihood (8) coin-
cides with the log-likelihood of Box and Jenkins (1976) corresponding to the
reduced form ARIMA model of {zt}. This can be seen by considering that,
as shown in Gómez and Maravall (1994b), p.49, the diffuse likelihood and
the marginal likelihood of Ansley and Kohn (1985) coincide, and that the
marginal likelihood is the likelihood of the differenced series (the Box and
Jenkins' likelihood) or a generalization of it.

In order to evaluate the diffuse log-likelihood efficiently, let E = LL', with
L lower triangular, be the Cholesky decomposition of S = Var(e)/of and
suppose that an efficient algorithm exists to compute L-1z, L~1X and \L\.
This algorithm is a slight modification of the DKF, which will be described
later. Then, premultiplying (7) by i/"1, it is obtained that

L~lz = L~1X8 + £-*€, (9).



where Var(L 1e) = of/jv. Therefore, model (9) is an ordinary linear regres-
sion model. The GLS estimators 8 and a\ can now be efficiently and accu-
rately obtained using the QR algorithm, as suggested by Kohn and Ansley
(1985). This last algorithm premultiplies both L~^z and L~1X by an or-
thogonal matrix Q to obtain v = QL~lz and (.R', 0')' = QL~1X, where
R is a nonsingular d x d upper triangular matrix. Then, 6 = R-1v\ and
of = v'2V2/(N — d), where v = (ví,^)', vi has dimension d and u2 has
dimension N - d. \X'^~1X\ in (8) can be calculated as \X'%-1X\ = \R'R .

To understand the meaning of the DKF of De Jong (1991), consider first
that 6 is zero in (7) and of = 1. Then, we can apply the ordinary Kalman
filter, given by the recursions

et = zt-H'xt\t-i, ofii-i = H'Ht\t-iH + a^

Kt = F^t\t-iH/^t\t-i^ &t+i\t = Fxt\t-i + Ktet

S,+i|t - (F-KtH')^t.1F' + GGf,

where the initial conditions are XI\Q = 0 and SI|Q = HVar(t/)E/ and the co-
variance matrix Var({7) can be efficiently computed like in Jones (1980). The
sequence of standardized innovations et/<rt\t-i, t — 1,... , AT is an orthogonal
sequence with mean zero and covariance matrix equal to the identity ma-
trix. This implies that this sequence coincides with L~lz in (9). Also, \L\ —
YltLi °í|í-i- These are standard results of the Kalman filter. Proofs can be
seen in Anderson and Moore (1979).

A consequence of these results is that the Kalman filter can be seen as an
algorithm that, applied to any vector v of data, yields L-iv. Therefore, if 6
is not zero in the GLS model (7), we can apply the Kalman filter to the data
z and the columns of the X matrix to obtain L~lz and L~1X. The DKF is
an algorithm that allows for the automatic computation of these quantities.
In this algorithm, the recursions for et and xt\t_i in the Kalman filter are
augmented to matrix recursions

(et,E() = (ztM-H'fr^Xt^),

(xt+1\t,Xt+i\t) = F(xt\t-i,Xt\t-i) + Kt(et,Et),

where the additional columns correspond to new states for the columns of the
X matrix. The other recursions in the Kalman filter remain the same and the

10



initialization is (¿i|o,^i|o) = (0, —A) and Si|0 as before. It can be shown, us-
ing the results in De Jong (1991), that stacking the vectors (ei? Et)/crt\t-i one
on top of the other for t = 1,..., JV, the matrix (L~lz, L~1X) is generated.

The DKF also has the recursion Qt+1 = Qt + (et,Et)'(et,Et)/(r^t_-L, ini-
tialized with Qi = 0. This recursion accumulates the partial squares and
cross products in such a way that

n \ (L-1*)' 1 [r-i r-iY] _ \ z'^z z'^X 1QN+I - [(L-ixyl r Z'L x\ - [x'x^z x'x-lx\

and from QN+I the GLS estimators 8 and of can be computed. We propose in
this paper a Kalman filter algorithm which is the DKF without the recursion
for Qt and which applies instead the QR algorithm to (L^z, L~1X), in the
manner described above. We think that this procedure is numerically more
stable than solving the normal equations to obtain the GLS estimators and
is not computationally expensive.

Note that of is supposed to be one in the proposed algorithm because it
can be estimated later with GLS. Instead of concentrating out of the diffuse
likelihood this parameter, we could have concentrated out o^. In this case,
we would use of/o^ instead of of in the proposed procedure.

Once the GLS estimators 8 and of in (7) have been obtained, it can be
shown, using the results in De Jong (1991), that the diffuse predictors ITV+I
and XN+I of ZAT+I and -ATjv+i are

A A A

ZN+I = H'XN+I\N + EN+IU, ¿jv+i = ¿AT+I|JV — X^+I\N^

Mse(zN+l) = crlo*\t_i + EN+1Use(8)E'N+-L

Mse(xN+1) = ff£SN+i\N + XN+i\NUse(8)X'N+llN,

where Mse(¿) = ¿¡(X'X^X)-1 - ¿¡R^R''1.
Diffuse smoothing refers to the process of obtaining the estimator xt of

the state xt based on the entire data vector z = (zi,..., zyv)'. The estimator
xt can be obtained by means of an augmented version of any of the existing
algorithms for smoothing, like the fixed point smoother or the fixed interval
smoother. In this paper we will use an augmented fixed point smoother be-
cause it can be simplified so that very small storage requirements are needed,
see Gómez and Maravall (1994a), and because it is well suited for revisions
of the estimates as new data come in.

11



The augmented fixed point smoother for zs, 1 < s < N, is the set of
recursions

Kf = E^^MVi, S?+1|t = ̂ (F - KtH')'

(%s\t,Xs\t) = (zs\t-i,Xa\t-i) + K£(et,Et)

Ss|í = Ss|í_i - S !̂ #(#")',

initialized with S"|s_! = Sa|s-i, where cr2^^, Kt, (et,Et], (x^-i.X^^) and
Es|s_i are produced by the proposed Kalman filter algorithm. It can be
shown that the estimator xs and its Mse are obtained from

A A — A A A

a* = XS\N ~ XS\N6, Mse(zs) = <7¿X!s|jv + Xa\NMse(8)Xs\N.

We emphasize that we do not claim that the proposed algorithms for
Kalman filtering and smoothing are the best ones available. However, they
are efficient and numerically stable, without being computationally expen-
sive.

EXAMPLE 1 Suppose a yearly univariate series z = ( Z I , . . . , Z N ) ' which
follows the model zt = st + nt, where the model for the signal st is Vst = bt.
Define the state vector Xt = st. Then, a state space representation is given
by (4) and (5), where F = l , G = l,i/" = l, and 6 — SQ. The initial state
is x\ = 8 + 61 and of can be concentrated out of the likelihood by defining
Vai(b't, n't}' = of diag(l,A), where A = <r^/0f. The proposed algorithm is
initialized with (¿1,0, ̂ 1,0) = (0, — 1) and Sii0 = 1.

EXAMPLE 2 The Hodrick-Prescott filter. Suppose a quarterly univariate
series z — (zi, . . . ,2jv)' which follows the model zt = st + nt, where the
model for the signal st is V2Si = bt. The state vector is defined as xt =
(54, Siit-i)', the polynomial a(B) = V2, where d = 2, and the degrees of <j>(B)
and 0S(B) are p = qs = 0. Then, r = 2, $*(B} = a(B), and the state space
representation is given by by (4) and (5), where <$, = — 1 and $[ = 2 in (6),
G — (1,2), H = (1,0) and 8 = (a_i,s0)'- The initial state is

r-i 21. , r i i ,
Xl= -2 3\S+ \2\bl-L ¿ oJ L^ J

<72 can be concentrated out of the likelihood by defining Var(6¿,nQ' = of
diag(l,A), where A = cr^/of. Therefore, we initialization of the proposed

12



algorithm is

r Y \ [° * ~21 v Í1 21(*i|o,*i|o)=[0 2 _ 3 J , Si|o = [2 4 J -

2.2 Details of Approach B

Under the assumptions and with the notation of this Section, it is not difficult
to verify that the Wiener-Kolmogorov formula corresponding to the signal
Si in (1) is given by

6s(B}Os(F}al
t Os(B}Os(F}vt + f(BW(FW " l Uj

Since the denominator in (10) is also 0(B)0(F)cr%, defining k2 = a\¡a\ and
ir(B) = kQs(B}/0(B}, expression (10) can be written more compactly as
St = TT(B)7T(F)zt.

The procedure used by Burman (1980) for signal extraction transforms
the filter v(B)ir(F) into a sum of the form 7r(B)ir(F) = G(B] + G(F). Using
the filter jargon, this can be described as a parallel implementation of the
filter. If the filter is applied to the series as a product of the two factors 7r(J?)
and K ( F ) , this is called a cascade implementation. That is, the filtered series
St is obtained as St = v(F) [ir(B)zt]. The cascade implementation is simpler
than the parallel one since it is not necessary to partition the two-sided filter
into two one-sided filters.

The algorithm for the cascade implementation can be obtained as follows.
Let yt = ir(B)zt. Then, using the ARIMA model for zt and the definition of
w(B), it is easy to verify that yt follows the model <j)*(B}yt = k0a(B)at, where
the at are the innovations of zt. This, together with the fact that the series zt
also follows the backward model <j>*(F}zt — 0(F)vt, implies, after projecting
onto the finite sample z — (zi,..., ZN)',

<t>*(B}yt = 0 t>N + qs + l

4>*(F)zt = 0 f < - 9 ,

where q = max{qs,p + d} is the degree of 0(B}. Let p* be the degree of
</>*(B). Then, the algorithm is

13



1. Solve the system

0(B)yt = kOs(B)zt t = -q + l,...,p*-q

<j>*(F}yt = O i = -2<z + l , . . . , -<7

where q + qs backcasts are needed: ¿_g_ i s+i,. . . , I0-
For t = p* — q+ I,... ,N + 2<?s, obtain yt from the recursion 0(B)yt =
kOs(B)zt, where 2qs forecasts are needed: Ijv+i, • • • , ¿N+2gs-

2. Solve the system

6(F)st = kOs(F}yt t = N + qs -p* + 1,... ,N + qs

P(B)st = 0 t=N + q, + l,...,N + q.+q

For t = N + qs — p*,..., 1, obtain s¿ from the recursion 0(F}st =
k6s(F}yt.

In order to obtain the forecasts and backcasts needed in step 1 of the
previous algorithm, instead of using (4) and (5), it is easier to use a state
space representation based on the reduced form ARIMA model </)*(B)zt =
0(B}at. The ordinary Kalman filter, initialized at t = d + 1, can be used
like in Gómez and Maravall (1994a) to compute the forecasts. Reversing the
series and using the same procedure, the backcasts can also be obtained.

2.3 Details of Approach C
Suppose the observed series z — (zi,. . . , ZN*)' and let s = (si,.. . , SAT)'. With-
out loss of generality, assume of = 1 and let A = <7^/<7& = <r%- Let further
ut = a(B)st, u = (U(¿+i,. . . ,ujv)' and Var(w) = 0. Then, the problem is
minimize Y^=\(zt — -St)2 + Au'il~1u. Define the (N — d) x N matrix

D =

ad ••• ai 1 0 ••• 0
0 ad • • • «i 1 • • • 0

0 0 0 0 0 ••• i j

(U)

and let O = LL'', with L lower triangular, be the Cholesky decomposition of
ÍÍ. Then, the problem can be expressed more compactly as minimize n'n +

14



\(L 1Ds)'L lDs, where n = z — s. Using standard matrix differentiation
results, the solution can be easily seen to be

-i
st = [I+\(L-*D)'L-*D\-*z = [[/, J\(L-*D}'} [^/-i^]]" *• (12)

In order to solve (12) in a numerically safe manner, we can proceed as follows.
Apply first the QR algorithm to the matrix [/, \f\(L~1D)']' to obtain an
orthogonal (2N - d) x (2N - d) matrix Q such that Q'[I,^/\(L-1D)'}' =
[R', 0']', with R an upper triangular N x N matrix. Then, solve R'Rst = z.

The matrix L~1D can be computed bypassing the inversion of 0 or L
by applying the Kalman filter corresponding to the model ut = Qsbt to the
columns of the matrix D. That is, after setting the state space representation
corresponding to that model, the same Kalman filter is applied N times, using
at iteration i the z'-th column of D as data.

Note that the matrices involved in this approach may be of considerable
dimension and, therefore, it is important to use a computational procedure
that is numerically stable.

2.4 Equivalence of Approaches A, B and C
The main result of this Section is contained in the following theorem. The
proof is in Appendix B.

Theorem 1 Suppose that the vector 6 and the proposed Kalman filter al-
gorithm and augmented fixed point smoother are used when approach A is
applied. Then, under the assumptions of this Section, the approaches A, B
and C are equivalent.

It is to be noted that, as far as the estimator of s¿ based on the finite
sample is concerned, it is irrelevant which of the two assumptions of Bell
(1984), A or B, is made. This follows from result 1 of Bell and Hillmer
(1991) and the transformation of Bell (1984), p. 651, between the starting
values of both assumptions.

The methods described in this Section to implement approaches A, B
and C will be applied to an example in Appendix C, where all details of the
computations will be given.
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2.5 Extension of Results
The results of this Section can be extended without difficulty to more than
two components. Consider, for example, the decomposition zt = pt + st + Wt,
where pt is the trend, st is the seasonal and wt is the irregular component.
Then, approach A can be implemented using the diffuse likelihood approach
and the proposed Kalman filter algorithm of Section 2.1. Only a simple
generalization of both the state space representation and the initialization to
two components is needed. Specifically, the state vector is defined as xt =
(xt , xl)', where xf and #£ correspond to pt and st and are defined in terms of
the models followed by these components, in a manner similar to that used in
Section 2.1 for st. Using the two subcomponents x\ and x*, the initialization
is now obvious.

Approach B was already applied in Burman (1980) to more than two
components and approach C can be applied using the results of Akaike
(1980a, 1980b). More specifically, let ap(B) and as(B) be polynomials
with all their roots on the unit circle of degrees ra and n, ifi = ap(B}pt,
^ = K+i,-..,<r)', «Í = «.(£)*, us = («'+!,...,u^)', wt ~ JV(0,<72),
up ~ JV(0, (T2Xpup), and us ~ 7V(0, <72ASÍÍS). Then, the problem is minimize

I>* -pt- *)2 + ̂ -^'n;1^ + ̂ «-'íí;1^.
t—i Ap As

The normality assumption has been made to simplify the exposition, but
the results are also true for the nonnormality case. The only difference would
be that the estimators would be the best ones in the mean squared sense only.
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3 Application

Several programs in Fortran have been written by the author to implement
the methodology outlined in the paper. The programs allow for the applica-
tion of the three approaches and are available from the author upon request.

Programs TRAMO and SEATS of Gómez and Maravall (1996), have been
used for automatic model identification (including a test for the logarith-
mic transformation) and model estimation (TRAMO), and signal extraction
(SEATS), based on the canonical decomposition of the reduced form ARIMA
model for the series. These programs are available at the Internet address

http://www.bde.es
To simplify the exposition, the automatic outlier detection and correc-

tion facility of TRAMO has not been used, but this aspect could be easily
incorporated into the proposed procedure.

As an example, we have used the series of quarterly US GNP, from the
first quarter of 1951 until the fourth quarter of 1985. The series can be
taken from Citibase data bank. Using TRAMO, the multiplicative ARIMA
model (0,1,1)(0,1,1)4 is specified for the logs of the data and the model
parameters are estimated. The fit is acceptable, although the residuals show
some departure from normality. This is due to the presence of two outliers
(transitory changes), at 1984-1 and 1958-1. But, as mentioned above, we
do not correct for the effect of these outliers and the model is accepted.
After having passed the model and the parameter estimates to SEATS, signal
extraction is performed. Then, the HPF is applied to the seasonally adjusted
series (SAS) using approaches A, B and C. The results, only for the first year
and the last year of the data, are shown in table 1. They are practically
identical for the three approaches and the same thing happens with the rest
of the data.

The gain functions of the HPF and the trend and SAS filters used by
SEATS are displayed in figure l(a), whereas, in figure l(b), one can see the
trend component estimated by SEATS and the smoother trend obtained by
filtering the SAS with the HPF. In the x-axis in figure l(a) we have frequen-
cies, from zero to TT. In figure l(b), in the x-axis we have observations and
in the y-axis we have the trends in logarithms. The HPF is a low-pass filter
that approximates rather well an ideal filter that passes all components with
periods greater than thirty two quarters (eight years).
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Table 1: US GNP filtered with the Hodrick-Prescott filter

Approach A Approach B Approach C
1951 I 4.397693554171079

II 4.409045168767950
III 4.420389562455971
IV 4.431715093283309

1985 I 6.879890196137601
II 6.900816816259312
III 6.921724398682671
IV 6.942624409350197

4.397693554171953
4.409045168768817
4.420389562456831
4.431715093284160
6.879890196139041
6.900816816260792
6.921724398684195
6.942624409351771

4.397693554170885
4.409045168767809
4.420389562455878
4.431715093283252
6.879890196137391
6.900816816259041
6.921724398682327
6.942624409349766

APPENDIX A

Proof of Theorem 1.
We prove first the equivalence of approaches A and B. Suppose that we want

to use approach A to estimate st based on z = (z1;... ,£/v)'? the observed series.
To this end, the proposed Kalman filter is first applied, followed by the QR algo-
rithm, to obtain the GLS estimator 6. Then, we apply the augmented fixed point
smoother. Denote this estimator by £(5^, ¿>).

Suppose now that 77 = (zi_d,..., z0)' is used instead of 6 to model uncertainty
and that approach A is used again to estimate st based on z. Denote this estimator
by E(st\z,f¡). Then, by result 1 and examples 1 and 2 of Bell and Hillmer (1991),
the transformation approach estimates of st using 6 and 77 coincide. By theorem
5.2 of Ansley and Kohn (1985), these last two estimators also coincide with the
diffuse estimators E(st\z,o) and E(st|2r, 77).

Make assumption A of Bell (1984) and suppose that 77 instead of z* = (zt,...,
zdy is used to generate the series, which in the present context means that 77
is independent of {bt} and {nt}, and assume that the complete realization {...,
2_i,20»2i, ..-} is known. Then, by the results of Bell (1984), pp. 662-663, the
Wiener-Kolmogorov filter can be applied to the doubly-infinite series to obtain
the best linear estimator, in the mean squared sense, of st, which will be de-
noted by E(Si|{zt}). Projecting first this estimator onto the space generated by
{77, zi,... ,ZN}, where rj is considered fixed, and then projecting this projector
onto the space generated by { Z I , . . . , Z N } , yields E(st\z,77), the estimator men-
tioned above. This implies that E(s4 |z, ¿) coincides with the estimator that results
after replacing in E(5t|{^i}) the unknown zt with forecasts and backcasts, which
can be obtained using the reduced form AR.IMA model and an appropriate state
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Figure 1: (a) Gain Functions of HPF and SEATS Trend and SAS Filters,
(b) Trends estimated by SEATS and HPF.

space representation. The algorithm of G. Tunnicliffe Wilson can be used like
in Burman (1980) to avoid the need to compute a large number of forecasts and
backcasts.

To prove the equivalence of approaches A and C, let s = (si,.. . ,s¡v)' and
partition s = (s/,s//)', where s/ = ($!,..., sd)' and s// =(sd+1,...,sN)'. Choose
7 = 5/ to model uncertainty and let further ut = a(B)st, t = d + 1,..., JV, u =
(tíd+i,.. . , UN)', and n = (n1 ? . . . , n^)'. Assume that 7 is independent of u and n
and that s and n are normally distributed, and consider the joint distribution of
(5,2,7). Since s¡ = 7, the density p ( s , z , f ) is a degenerate density and exists in
the subspace generated by the variables contained in (s,z). Therefore, p(s,z,~f) =
p(s, z} and we can write the following equality between densities

X*l*»7M*l7M7) = P(z\s)p(s),

where p(s\z,7) is also a degenerate density which coincides with p(sn\z^~). On
the other hand, we have p(s) = p(sn\sI}p(^} and, by lemma 1 of Gómez and
Maravall (1994a), P(SII\SI) = p(u). Substituting into the previous expression and
cancelling terms yields

p(s\z,j)p(z\-j) = p(z\s)p(u).

19



The equality between densities implies

(s - EH*,7))'íif-¡,„(* - E(S|*>7)) + (z- *7)'n;¿(* - Xi)

-(z- s)'(z - s)/A + íí'íí~X

where íí,|«,7, íí«|7, and ílu are the covariance matrices o f p ( s \ z , ^ } , p(z\f) and p(u).
Writing tí = Ds, where D is the matrix defined in (11), and premultiplying the
previous equality by A, it is obtained that

A \(s - E(a|2:,7))'ilfl,,> - E(s|*, 7)) + (z- Xi)'SlU(z - X j ) }

= (z- s)'(z - s) + Xs'D'ti-iDs.

The value of 5 which minimizes the left hand side of the previous equality must
be equal to the one that minimizes the right hand side. A brief inspection of
the left hand side shows that the second term is minimized when 7 is equal to 7,
the GLS estimator of model (7). For any 7, the first term of the left hand side
is minimized for s equal to E(s|^,7). Therefore, the minimizer of the left hand
side is the result of replacing 7 in E(sJ2,7) with 7. It is now evident that this
minimizer coincides with E(s\z,j), the estimator of s, based on z and 7, obtained
with approach A. By result 1 and example 2 of Bell and Hillmer (1991), E(s\z,'j)
coincides with E(s\z,6), the estimator obtained with approach A, based on z and
6. Using calculus, it is easy to see that the minimizer of the right hand side is s =
(I+A-D'íi-1!))-1*. a

APPENDIX B

In this appendix, approaches A, B and C will be applied to example 1, with
the particular values &% = 2, of — 1, and supposing the observed series is z =
(zi,Z2,z3y. Details of the computations will be given.

Since zt — st + nt and st follows the model Vst = bt, the series zt follows
the model Vzt = (1 + OB}at and the parameters 9 and cr% = Var(ot) can be
obtained by means of the autocovariance generating function corresponding to
(1 + OB}at = bt + (1 — B}nt. Performing the calculations yields a\ = 4 and 6 =
-1/2.

Suppose approach A is applied first and define the state vector xt = st. Then,
as shown in Section 2, a state space representation is given by (4) and (5), where
F = I, G = 1, H = 1, and 6 — s0. The initial state is x\ = S + b: and the proposed
Kalman filter algorithm is initialized with (¿i|o,-X"i|o) = (0,-1) and Si|0 = 1.

Applying the proposed Kalman filter for í = 1,2,3, yields (e^E^ = (zi,l),
(7?|0 = 3, (z2|i,l2|i) = (*i/3,-2/3), S2|i = 5/3, (e2,£2) = (-^/3 + *2,2/3),
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a\v = 11/3, (¿3|2,13|2) = (2*i/ll + 5*2/11, -4/11), £3|2 = 21/11, (e3,E3) =
(-2*!/ll - 5*2/11 + ¿3,4/11), <73

2
|2 = 43/11.

Using the notation of section 2.1, the matrices Z"1* and L~1X of model (9)
are L~:z = (*i/\/3,(-*i/3 + *2)v

/37II,(-2*i/ll - 5*2/ll + *3Vll/43)' and
L~1X = (l/v/3,(2/3)v/37IT,(4/ll)1^I7Í3)/. From this, it is obtained that 8 =
ll*i/21 + 6*2/21 + 4*3/21 and Mse(¿) = 43/21.

Applying the fixed point smoother to estimate Xi yields SJi0 = 1, Sjh = 2/3,

(ai|i,!i|i) = (*i/3,-2/3), SS,2 = 4/11, (¿na.Xna) = (3^/11 + 2*a/ll, -6/11),
(¿i|3,^"i|3) = (ll*i/43 + 6*2/43 + 4*3/43,-22/43). Using the estimator ¿, it is
obtained that §1 = ¿i|3 — Xi\38 = ll*1/2l4-2*2/7 + 4*3/21. Proceeding similarly,
the fixed point smoother yields J2 = 2*i/7 + 3*2/7 + 2*3/7 and s3 = 4*!/21 +
2*2/7 + 11*3/21.

In order to apply approach B, let k = l/cra = 1/2. Then, st = H(F)H(B)zi,
where H(B} = k/0(B). Using the cascade implementation, the following two
systems have to be solved

(l-B/2)yt = zt/2 i = 0 (B.I)

(l-F)yt = O í=- l (B.2)

and

(l-F/2)st = yt/2 í = 3 (B.3)

(l-B)St = 0 í = 4. (B.4)

One backcast *0 is necessary for the previous systems. This can be obtained by
first reversing the series and then applying the Kalman filter like in Gómez and
Maravall (1994a). A suitable state space representation is given by zt = H'^x^ + at

and xt+1 = Fzxt + Gzat, where xt - *t?(_i = zt - at, H'z = 1, Fz = 1 and Gz —
1 + 0. Using the reversed series (*s,*2,*i)', choose 77 = *3 to model uncertainty
with respect to the initial conditions and take x2 = nrj + 60,1 as first state. Then,
the Kalman filter can be used, initialized with £2,i =¿3 and E2,i = O2, where cr^
is supposed to be one because it is concentrated out of the likelihood. Performing
the calculations yields *0 = ll*i/21 + 2*2/7 + 4*3/21.

Solving first (B.I) and (B.2), it is obtained that y_i = y0 = *0. Using then the
recursion yt = yi_1/2 + *(/2 for t = 1,2,3, yields yl = 16*i/21 + *2/7 + 2*3/21,
y-2 = 8*i/21 + 4*2/7 + *3/21 and ys = 4^/21 + 2*2/7 + 11*3/21. The solution of
(B.3) and (B.4) is s3 = s4 = y3. Using the recursion st = st+i/2 + yt for t = 2,1,
it is seen that the results coincide with those of approach A.

Suppose approach C is applied. Then, the problem is minimize Y?t=i(zt~s«)2 +
2Si=2(^7-s*)2- Letting s = (si,s2,s3)', the solution is given by s = (I + 2D'D)~1z,
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where D is the 2 x 3 matrix

It is easy to check that

D =

(I+2D'D)~1 =

- 1 1 0
0 -1 i!"

•11/21 6/21 4/21
2/7 3/7 2/7

. 4/21 2/7 11/21.
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