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Abstract 

In this article, two parallel decompositions of an ARIMA model are presented. Both of 
them are based on a partial fraction expansion of the model and can incorporate complex 
seasonal patterns. The first one coincides with the well known Beveridge–Nelson decompo­
sition. The other constitutes an innovations form of the Beveridge–Nelson decomposition 
and coincides with the innovations form of many of the usual additive exponential smooth­
ing models. It is shown that specifying complex models based on the Beveridge–Nelson 
decomposition and using its innovations form may provide a useful tool for forecasting. 
It is also shown that the Beveridge–Nelson decomposition is adequate for concurrent esti­
mation of the unobserved components, but that multiple source of error models are more 
appropriate if estimation of the components based on the whole sample is required. 

JEL Classification: E32, E37, C18, C32 

Keywords: ARIMA models, Beveridge–Nelson decomposition, signal extraction, exponen­
tial smoothing, innovations form, forecasting 



1 Introduction 

In this article, two partial fraction expansions of an ARIMA model are presented. They 

are based on what is known in electrical engineering as parallel decompositions of rational 

transfer functions of digital filters. The first decomposition coincides with the one pro­

posed by Beveridge and Nelson (1981), henceforth BN, that has attracted considerable 

attention in the applied macroeconomics literature, but also generalizes it to seasonal 

models. The second one corresponds to the innovations form of the BN decomposition. 

The two decompositions are analyzed using both state space and polynomial methods. 

It is shown that most of the usual additive exponential smoothing models or some gener­

alizations of them are in fact BN decompositions of ARIMA models or generalizations of 

it. This fact seems to have passed unnoticed in the literature, although the link between 

single source of error (SSOE) state space models and exponential smoothing has been 

recognized (Hyndman et al., 2002) and used for some time (e.g., De Livera, Hyndman, 

and Snyder, 2011). It is also shown that these SSOE models are in fact innovations state 

space models corresponding to the BN decomposition that defines the model. 

Based on the generalized BN decomposition, a specification of state space models with 

complex seasonal patterns is proposed that can handle hourly, daily or weekly data, that 

may have integer or even non integer seasonal periods. The state space innovations form 

of this BN decomposition is useful for model estimation and forecasting. However, these 

models present some differences with respect to the models proposed by De Livera et al. 

(2011) that may affect forecasting efficacy. 

It is shown in the article that the generalized BN decomposition can be useful for 

the concurrent estimation of unobserved components, but that multiple source of error 

(MSOE) models are needed if one is interested in components estimated using the whole 

sample. The link between MSOE and SSOE estimators is also analyzed. It is proved 

that, when there is no correlation among the components in the MSOE model, the con­

current estimators coincide with the ones obtained using the SSOE model given by the 

BN decomposition. 

The remainder of the article is organized as follows. In Section 2, the two parallel de­

compositions of an ARIMA model are presented. These two decompositions are analyzed 

using polynomial and state space methods. The connection with exponential smoothing 
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is studied. A specification of models with complex seasonal patterns is proposed that is 

based on the BN decomposition, and its innovations state space form is used for model 

estimation and forecasting. Finally, signal extraction using the BN decomposition and 

MSOE models is analyzed and the results obtained with both approaches compared. An 

application to some real time series concludes in Section 3. 

2 Two Parallel Decompositions of an ARIMA Model 

In this section, we will consider what is known in digital filtering as parallel decompo­

sitions of rational transfer functions of digital filters (see Oppenheim and Schafer, 2010, 

pp. 390–395). These decompositions are based on partial fraction expansions of the trans­

fer functions. Since a time series following an ARIMA model can be considered as the 

result of applying a rational filter to a white noise sequence, parallel decompositions can 

also be useful in time series analysis. 

Suppose a time series {yt}, t = 1, . . . , N , that follows a multiplicative seasonal ARIMA 

model, i.e. 

φ(B)Φ(Bn)(∇d∇n
D yt − µ) = θ(B)Θ(Bn)at, (1) 

where µ is the mean of the differenced series, B is the backshift operator, Byt = yt−1, 

n is the number of seasons, d = 0, 1, 2, D = 0, 1, ∇ = 1 − B is a regular difference and 

∇n = 1−Bn is a seasonal difference. Our aim in this section is to decompose model (1) 

using two partial fraction expansions. This can be done using both polynomial and state 

space methods. However, it is to be emphasized that the developments of this and the 

following section are valid for any kind of ARIMA model, multiplicative seasonal or not. 

This means that we may consider general models with complex patterns of seasonality, 

like for example 

N

φ(B) ∇d 
 

(1 + B + B2 + · · · + Bni−1)yt − µ = θ(B)at, (2) 
i=1 

where n1, . . . , nN denote the seasonal periods and the polynomials φ(z) and θ(z) have 

all their roots outside the unit circle but are otherwise unrestricted, or even models with 

seasonal patterns with non integer periods as we will see later. 
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The following lemma, that we give without proof, is an immediate consequence of the
 

partial fraction expansion studied in algebra and will useful later. See also Lemma 1 of 

Gómez and Breitung (1999, p. 528) and the results contained therein. 

Lemma 1 Let the general ARIMA model ∇dφ(B)yt = θ(B)at, where the roots of φ(z) 

are simple and on or outside of the unit circle and φ(z) and θ(z) have degrees p and q, 

respectively. Then, the following partial fraction decomposition holds 

θ(z) B1 Bd
p

Akq−p−d= C0 +C1z + · · · +Cq−p−dz + + · · · + +
m 

. (3) 
(1− z)dφ(z) 1− z (1− z)d 1− pkz 

k=1 

If pk is complex then Ak is complex as well and the conjugate fraction Ak/ (1− pkz) also 

appears on the right hand side. The two terms can be combined into the real fraction 
(
Ak + Ak

)
−
(
Akpk + Akpk

)
z 
. 

1− (pk + pk) z + pkpkz
2 

After joining complex conjugate fractions, we can express (3) as 

d m1 m2θ(z) Bk Ak Dk + Ekz q−p−d = C0 +C1z + · · · +Cq−p−dz +
m 

+
m 

+
m 

2 
,

φ(z) (1− z)k 1− pkz 1 + Fkz + Gkz
k=1 k=1 k=1 

where the coefficients Ck, Bk, Ak, Dk, Ek, Fk, Gk and pk are all real. 

2.1 Polynomial Methods 

It is shown in Gómez and Breitung (1999) that a partial fraction expansion of model 

(1) leads to the BN decomposition in all cases usually considered in the literature and 

that, therefore, we can take this expansion as the basis to define the BN decomposition 

for any ARIMA model. To further justify this approach, consider that in the usual BN 

decomposition, yt = pt + ct, models for the components are obtained that are driven by 

the same innovations of the series. Thus, if the model for the series is φ(B)yt = θ(B)at, 

the models for the components are of the form φp(B)pt = θpat and φc(B)ct = θcat. But 

this implies the decomposition 

θ(z) θp(z) θc(z) 
= + ,

φ(z) φp(z) φc(z)

and, since the denominator polynomials on the right hand side have no roots in common, 

the previous decomposition coincides with the partial fraction decomposition, that is 

unique. 
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Assuming then that the parallel decomposition of the ARIMA model (1) is the basis of
 

the BN decomposition, suppose in (1) that p and P are the degrees of the autoregressive 

polynomials, φ(B) and Φ(B), and q and Q are those of the moving average polynomi­

als, θ(B) and Θ(B). Then, letting φ∗(B) = φ(B)Φ(Bn), Δ(B) = ∇d∇n
D and θ∗(B) = 

θ(B)Θ(Bn), supposing for simplicity that there is no mean in (1) and using Lemma 1, 

the partial fraction expansion corresponding to model (1) is 

θ∗(z) αp(z) αs(z) αc(z) 
= γ(z) + + + , (4) 

φ∗(z)Δ(z) (1− z)d+D S(z) φ∗(z)

where S(z) = 1+ z + · · · + zn−1 and we have used in (4) the fact that ∇n = (1−B)S(B). 

Here, we have grouped for simplicity several terms in the expansion so that we are only 

left with the components in (4). For example, 

d+D 
Bk αp(z)m 

(1− z)k 
=

(1− z)d+D
, 

k=1 

etc. Note that the third term on the right of (4) exists only if D > 0. The degrees of the 

γ(z), αp(z), αs(z) and αc(z) polynomials in (4) are, respectively, max{0, q ∗ − p ∗ − d∗}, 

d∗ − 1, n − 2 and p ∗ − 1, where p ∗ =p + P , q ∗ = q + Q and d∗ = d + D. 

Based on the previous decomposition, we can define several components that are 

driven by the same innovations, {at}. The assignment of the terms in (4) to the different 

components depends on the roots of the autoregressive polynomials in (1). For example, 

the factor (1− z)d
∗ 

, containing the root one, should be assigned to the trend component, 

pt, since it corresponds to an infinite peak in the pseudospectrum of the series at the zero 

frequency. Since all the roots of the polynomial S(z) correspond to infinite peaks in the 

pseudospectrum at the seasonal frequencies, the factor S(z) should be assigned to the 

seasonal component, st. 

The situation is not so clear–cut, however, as regards the roots of the autoregressive 

polynomial, φ(z)Φ(zn), and in this case the assignment is more subjective. We will 

consider for simplicity in the rest of the article only a third component, that will be 

referred to as “stationary component”, ct. All the roots of φ(z)Φ(z
n) will be assigned to 

this stationary component. Therefore, this component may include cyclical and stationary 

trend and seasonal components. 

According to the aforementioned considerations, the SSOE components model 

yt = pt + st + ct (5) 
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can be defined, where pt is the trend, st is the seasonal and ct is the stationary component. 

The models for these components are given by 

∇d∗ pt = αp(B)at, S(B)st = αs(B)at, φ ∗ (B)ct = η(B)at, (6) 

where η(z) = γ(z)φ∗(z) + αc(z). 

Instead of expressing model (1) using the backshift operator, where the time runs 

backwards, it is possible to use the forward operator, Fyt = yt+1, and let the time run 

forwards. To this end, let m = max{q ∗ , p ∗ + d∗} and r = max{0, q ∗ − p ∗ − d∗}, where q ∗ , 

p ∗ and d∗ are, as defined earlier, the degrees of the polynomials θ∗(z) and φ∗(z)Δ(z) in 

(4). Then, using again Lemma 1, but with the z−1 instead of the z variable, it is obtained 

that 
z−mθ∗(z) δ(z−1) βp(z

−1) βs(z
−1) βc(z

−1) 
= 1 + + + + , (7) 

z−mφ∗(z)Δ(z) z−r (z−1 − 1)d∗ S(z−1) φ 
∗ 
(z−1) 

where φ 
∗ 
(z−1) = z−p ∗ φ∗(z) and the degrees of the polynomials δ(z−1), βp(z

−1), βs(z
−1) 

and βc(z
−1) are, respectively, max{0, r − 1}, d∗ − 1, n − 2 and p ∗ − 1. Transforming each 

of the terms of the right hand side of (7) back to the z variable yields 

θ∗(z) zβp(z) zβs(z) zβc(z) 
= 1 + zδ(z) + + + . (8) 

φ∗(z)Δ(z) (1− z)d∗ S(z) φ∗(z) 

This decomposition is an innovations form of the ARIMA model because if we multiply 

both terms of (8) by the innovation, at, we get the equality 

yt = at + yt|t−1 

= at + pt|t−1 + st|t−1 + ct|t−1, 

where, given a random variable xt, xt|t−1 denotes the orthogonal projection of xt onto 

{ys : s = t − 1, t − 2, . . .}. If the series is nonstationary, the orthogonal projection is done 

onto the finite past of the series plus the initial conditions. The relationship among the 

components pt, st and ct and their predictors, pt|t−1, st|t−1 and ct|t−1, can be obtained by 

computing the decomposition of each component in the forward operator. For example, 

if we take the model followed by the trend component given in (6), ∇d∗ pt = αp(B)at, we 

can write 
z−d∗ αp(z) βp(z

−1) 
= kp + ,

−d∗ z)d∗ z (1− (z−1 − 1)d∗ 
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where kp is a constant. Then, returning to the backward operator, 

αp(z) zβp(z) 
= kp + (9) 

(1− z)d∗ (1− z)d∗ 

and multiplying both terms of (9) by the innovation, at, yields 

pt = kpat + pt|t−1. (10) 

Therefore, pt|t−1 follows the model ∇d∗ pt|t−1 = βp(B)at−1. In a similar way, we can prove 

that there exist constants, kγ, ks and kc such that 

αs(z) zβs(z) αc(z) zβc(z)
γ(z) = kγ + zδ(z), = ks + , = kc + ,

S(z) S(z) φ∗(z) φ∗(z)

st = ksat + st|t−1, ct = (kγ + kc) at + ct|t−1, 

and st|t−1 and ct|t−1 follow the models 

S(B)st|t−1 = βs(B)at−1, φ ∗ (B)ct|t−1 = [φ ∗ (B)δ(B) + βc(B)] at−1. 

Note that the previous relations imply the equality 

1 = kγ + kp + ks + kc. (11) 

An example will help clarify matters. Suppose the ARIMA model
 
 

1 
 


B5∇4yt = 1− at. (12) 
2 

Then, the BN decomposition is given by the partial fraction decomposition of the model, 

i.e. 
1 5 11− zz 1 1 1 3 1 1 1−2 = 2 z + + + . 
4 21− z 2 8 1− z 8 1 + z 2 1 + z

Thus, defining 

1 1 1 3 1− 1 B 1 12 at−1, (13) pt = at, ct =at, s1,t = at, s2,t = 
1− B 8 1 +B 8 1 +B2 2 2 

and st = s1,t + s2,t, the BN decomposition, yt = pt + st + ct, is obtained. The innova­

tions form is given by the partial fraction decomposition of the model using the forward 

operator, i.e. 

−5 − 1 z
2 1 1 1 1 3 1 1 z−1 + 2 

= 1 + + − − 
z−1(z−4 − 1) 2 z−1 8 z−1 − 1 8 z−1 + 1 4 z−2 + 1 

21 1 z 3 z 1 z + 2z
= 1 + z + − − . 

2 8 1− z 8 1 + z 4 1 + z2 
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It follows from this that the innovations form is yt = at + pt|t−1 + s1,t|t−1 + s2,t|t−1 + ct|t−1, 

where 

1 1 1 3 
pt|t−1 = at−1,at−1, s1,t|t−1 = − 

1− B 8 1 +B 8 
1 + 2B 1 1 

at−1, ct|t−1 = at−1.s2,t|t−1 = − 
1 +B2 4 2 

In addition, the following relations hold 

1 3 1 
pt = at + pt|t−1, s1,t = at + s1,t|t−1, s2,t = at + s2,t|t−1, ct = ct|t−1. 

8 8 2 

2.2 State Space Methods 

There are many ways to put an ARIMA model into state space form. We will use in this 

article the one proposed by Akaike (1974). If {yt} follows the ARIMA model φ(B)yt = 

θ(B)at, where φ(z) = 1+φ1z+· · ·+φpz
p and θ(z) =θ0+θ1z+· · ·+θqz

q, let r = max(p, q+1), 

ψ(z) = φ−1(z)θ(z) = 
�∞ ψjz

j and xt,1 = yt, xt,i = yt+i−1 −
�i−2 ψjat+i−1−j , 2 ≤ i ≤ r.j=0 j=0 

Then, the following state space representation holds 

xt = Fxt−1 + Kfat 
(14) 

yt = Hxt, 

where  
0 1 0 · · · 0 

  
ψ0 

 

F = 

 

0 
. . . 

0 

0 
. . . 

0 

1 
. . . 

0 

· · · 
. . . 

· · · 

0 
. . . 

1 

 
, Kf = 

 

ψ1 
. . . 

ψr−2 

 
, (15) 

−φr −φr−1 −φr−2 · · · −φ1 ψr−1 

φi = 0 if i > p, xt = [xt,1, . . . , xt,r] 
′ and H = [1, 0, . . . , 0]. Note that we are assuming that 

θ0 can be different from one, something that happens with the models for the components 

in the BN decomposition. The representation (14) and (15) is not minimal if q > p, but 

has the advantage that the first element of the state vector is yt (the other elements of the 

state vector are the one to r − 1 periods ahead forecasts of yt). This is particularly useful 

if yt is not observed, so that this representation is adequate to put the BN decomposition 

into state space form. To see this, suppose that the BN decomposition is yt = pt + st + ct, 

where {yt} follows the model (1) and the components follow the models given by (6). 
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Then, we can set up for each component a state space representation of the form (14) and
 

(15) so that, with an obvious notation, we get the following representation for {yt} 
      
xp,t Fp 0 0 xp,t−1 Kf,p 

=

xs,t 
 

0 Fs 0


xs,t−1
+ 

Kf,s 
 at     

xc,t 0 0 Fc xc,t−1 Kf,c 
(16) 

xp,t 
 

[ ]
yt = Hp Hs Hc


xs,t 

, 

xc,t 

Hpxp,t, st Hsxs,t Hcxc,t. p,t s,t c,twhere pt = = and ct = Letting xt = [x ′ , x ′ , x ′ ] ′ , F = 

′ ′ ′ ] ′ diag(Fp, Fs, Fc), Kf = [Kf,p, K f,s, K f,c and H = [Hp, Hs, Hc], we can assume that the 

state space representation of {yt} is given by (14). 

To obtain the innovations state space model corresponding to (14), where xt = [x ′ , x ′ p,t s,t, 

′ ′ ′ ′ xc,t] 
′ , F = diag(Fp, Fs, Fc), Kf = [Kf,p, K f,s, K f,c] 

′ and H = [Hp, Hs, Hc] satisfy (16), con­

sider first that in terms of the matrices in (14) the transfer function, ψ(z), of model (1) 

can be expressed as 

ψ(z) = H (I − Fz)−1 Kf 

= 1 + zH (I − Fz)−1 FKf (17) 

and thus the following relation holds 

HKf = 1 (18) 

This relation is the state space equivalent to the polynomial relation (11). We also get 

from (17) that 

yt = at + H (I − FB)−1 FKfat−1, 

where B is the backshift operator. Then, if we define 

K = FKf , (19) 

and 

xt+1|t = (I − FB)−1 FKfat, 

we obtain the following state space representation 

xt+1|t = Fxt|t−1 + Kat 
(20) 

yt = Hxt|t−1 + at. 
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Note that xt|t−1 is the projection of xt onto {yt−1, yt−2, . . . , y1, x1} because 

−1 −1 xt = (I − FB) Kfat = 
[
Kf + z (I − FB) FKf

]
at 

(21) 
= xt|t−1 + Kfat. 

In fact, (21) is the measurement update formula corresponding to (20). Therefore, yt|t−1 

= Hxt|t−1 and the equations (20) constitute an innovations state space representation for 

yt = pt + st + ct such that yt = pt|t−1 + st|t−1 + ct|t−1 + at. 

If the ARIMA model followed by yt is invertible, so is its transfer function. In this 

case, by the matrix inversion lemma applied to (17), it is obtained that 

ψ(z)−1 = 1− zH (I − Fpz)
−1 K, 

where Fp = F −KH has all its eigenvalues inside the unit circle. In fact, it can be shown 

that the eigenvalues of Fp coincide with the inverses of the roots of the moving average 

polynomial of the model, θ(z), see, for example, Hannan and Deistler (1988, pp. 97–98). 

As an example, we will use again model (12). According to the models (13), the state 

space form (16) is 

 
pt 
 

1 0 0 0 0 0 


pt−1 

 
1/8 
 

 

s1,t 

s2,t 

s2,t+1|t 

ct 

 

= 

 

0 −1 

0 0 

0 0 

0 0 

0 0 0 0 

0 1 0 0 

−1 0 0 0 

0 0 0 1 

 

 

s1,t−1 

s2,t−1 

s2,t|t−1 

ct−1 

 

+ 

 

3/8 

1/2 

−1/4 

0 

 

at (22) 

ct+1|t 0 0 0 0 0 0 ct|t−1 1/2 
 

pt 
 

yt = 
[
1 1 1 0 1 0

] 
 

s1,t 

s2,t 

s2,t+1|t 

ct 

 

(23) 

ct+1|t 
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Using (19), the innovations state space form is 

pt+1|t 

 
1 0 0 0 0 0 

 
pt|t−1 

 
1/8 
 


s1,t+1|t

 
0 −1 0 0 0 0 


s1,t|t−1 

 
−3/8
      

s2,t+1|t

 
0 0 0 1 0 0 


s2,t|t−1 

 
−1/4
 

= 
  

+ 
 

at (24)       s2,t+2|t
 0 0 −1 0 0 0 s2,t+1|t−1

 −1/2      
ct+1|t 

 
0 0 0 0 0 1 


ct|t−1 

 
1/2 
       

ct+2|t 0 0 0 0 0 0 ct+1|t−1 0 
 

pt|t−1 

 

s1,t|t−1 

  [ ] s2,t|t−1 yt = 1 1 1 0 1 0
 

+ at. (25)  s2,t+1|t−1
 

ct|t−1 
  

ct+1|t−1 

Note that the relation HKf = 1 holds and that the matrix Fp = F − KH has all its 

eigenvalues inside the unit circle. Note also that the last row in the transition equation 

is zero and that, therefore, the last state can be eliminated from the state space form. In 

this way, we would obtain a minimal innovations state space form. 

Suppose we are given an innovations state space representation (20), minimal or not, 

′ ′ ′ ] ′ ′ ′ ′ ] ′ where xt|t−1 = [x , x , x , F = diag(Fp, Fs, Fc), K = [K , K , K and Hp,t|t−1 s,t|t−1 c,t|t−1 p s c

= [Hp, Hs, Hc], and we want to obtain the BN decomposition, yt = pt + st + ct, in state 

space form. We assume that Fp and Fs are nonsingular and Fc may be singular or empty. 

Of course, if Fc is empty, so are xc,t|t−1, Kc and Hc. Note that Fp and Fs are the matrices 

containing the unit and the seasonal roots, respectively, and that if Fc is singular or empty, 

then γ(z) in (4) is nonzero. To obtain the BN decomposition we distinguish two cases, 

depending on whether Fc is singular or empty or nonsingular. If Fc is nonsingular, then 

we solve for Kf in 

FKf = K 

to get (14), where pt = Hpxp,t, st = Hsxs,t and ct = Hcxc,t. If Fc is singular, then defining 

ct = ct|t−1 + kcat, 

where ct|t−1 = Hcxc,t|t−1 and kc is a constant, we can write 

ct 0 Hc ct−1 kc = + at. 
xc,t+1|t 0 Fc xc,t|t−1 Kc 
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If Fc is empty, then the previous expressions collapse to ct = kcat. In the following, we 

will only consider the case in which Fc is singular, leaving to the reader the necessary 

changes if Fc is empty. Thus, if we further define xa = [ct, x ′ ] ′ , Ha = [1, 0], Ka = c,t c,t+1|t c c 

′ ] ′ , F a ′ ′ ] ′ , Ka a[0, K c c = [0, Cc], where Cc = [Hc, F c and Hc
a 

c and Fc
a are conformal with xc,t, 

we can write 
      
xp,t+1|t Fp 0 0 xp,t|t−1 Kp 
xs,t+1|t


= 

0 Fs 0 


xs,t|t−1


+ 

Ks

at     

xa 0 0 F a xa Ka 
c,t+1|t c c,t|t−1 c  

xp,t|t−1[ ]
yt = Hp Hs c 


xs,t|t−1

+ at.Ha  
axc,t|t−1 

Solving for Kf
a in 

F aKa Ka HaKa 
f = , f = 1, 

Ka ′ ′ , Ka ] ′ , Ha ′ ′ where F a = diag(Fp, Fs, Fc
a), = [Kp, K s c 

′ 

= [Hp, Hs, Hc
a], Kf

a = [Kf,p, K f,s, 

Ka ] ′ ′ a ′ 

and Ka [kc, K ] ′ , we get (14), where pt = Hpxp,t, st = Hsxs,t, xc,t = xc,t and ctf,c f,c = f,c

= Hc
axc,t. Note that kc = 1−HpKf,p −HsKf,s and that (14) is not minimal in this case. 

As an example, the reader can verify that if we start with (24) and (25), we eliminate 

the last state in those equations, and we follow the previous procedure, then we get (22) 

and (23). 

2.3 Connection With Exponential Smoothing 

There has been lately some interest in using generalized exponential smoothing models 

for forecasting (see De Livera et al., 2011). These models are SSOE models that once 

they are put into state space form they become innovations model of the type we have 

considered in earlier sections. The question then arises as to whether these models have 

any connection with the models given by a parallel decomposition of an ARIMA model. 

It turns out that many of the basic exponential smoothing models coincide with those 

corresponding to the BN decomposition and in those cases, mostly seasonal, where they 

do not coincide the exponential smoothing models have been shown to have some kind of 

problem that is solved if the models given by the parallel decomposition are used instead. 
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To see this, suppose first Holt’s linear model, yt = pt−1 + bt−1 + at, where 

pt = pt−1 + bt−1 + k1at (26) 

bt = bt−1 + k2at, (27) 

and k1 and k2 are constants. If we substitute (26) into the expression for yt, it is obtained 

that yt = pt + (1 − k1) at. In addition, it follows from (26) and (27) that 

∇2 pt = k2at−1 + k1∇at. 

Therefore, we can write [
αp(B) 

]
yt = + kc at, (28) 

(1−B)2 

where αp(z) = k2z + k1(1 − z) and kc = 1 − k1. Since the partial fraction expansion of 

the polynomial in the backshift operator on the right hand side of (28) is 

k2z + k1(1− z) k1 − k2 k2 
+ kc = + + kc,

(1− z)2 1− z (1− z)2 

if we define ct = kcat, then yt = pt + ct, pt|t−1 = pt−1 + bt−1, ct|t−1 = 0 and yt = pt|t−1 + at. 

Thus, it is seen that Holt’s linear model is the innovations form corresponding to the BN 

decomposition of an ARIMA model, 

∇2 yt = (1 + θ1B + θ2B
2)at, (29) 

where θ1 = k1 + k2 − 2 and θ2 = 1 − k1. Note that, since k1 and k2 can univocally be 

solved in terms of θ1 and θ2 in the previous expressions, every ARIMA model (29) can be 

put in the form of a Holt’s model, yt = pt|t−1 + at, where pt|t−1 = pt−1 + bt−1 and pt and 

bt are given by (26) and (27). 

Suppose now Holt–Winters’ model, yt = pt−1 + bt−1 + st−n + at, where 

pt = pt−1 + bt−1 + k1at (30) 

bt = bt−1 + k2at, (31) 

st = st−n + k3at, (32) 

and k1, k2 and k3 are constants. There are apparently three unit roots in the model. 

However, a closer look will reveal that there are in fact only two unit roots. To see this, 
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substitute (30) and (32) into the expression for yt to give yt = pt + st + (1 − k1 − k3) at. 

In addition, it follows from (30), (31) and (32) that 

∇2 pt = k2at−1 + k1∇at, ∇nst = k3at. 

Then, we can write [
αp(B) αs(B) 

]
yt = + + kc at, (33) 

(1−B)2 (1−B)S(B) 

where S(z) = 1+ z + · · · + zn−1 , αp(z) = k2z +k1(1− z), αs(z) = k3 and kc = 1−k1 −k3. 

The partial fraction expansion of the polynomial in the backshift operator on the right 

hand side of (33) is 

k2z + k1(1− z) k3 k1 − k2 k2 k3/n β(z)
+ + kc = + + + + kc,

(1− z)2 (1− z)S(z) 1− z (1− z)2 1− z S(z) 

n−3 +where β(z) = [(n − 1) + (n − 2)z + · · · + 2z zn−2] k3/n. Thus, if we define ct = kcat, 

then yt = pt + st +ct, pt|t−1 = pt−1 + bt−1, st|t−1 = st−n, ct|t−1 = 0 and yt = pt|t−1 + st|t−1 

+at. Therefore, Holt–Winters’ model is the innovations form corresponding to the BN 

decomposition of an ARIMA model of the form 

∇2S(B)yt = θ(B)at, (34) 

where θ(z) is a polynomial of degree n +1. However, the components are not well defined 

because the seasonal component can be further decomposed as 
[
k3/n β(B)

]
st = + at,

1− B S(B)

and we see that the first subcomponent should be assigned to the trend because the 

denominator has a unit root. To remedy this problem, the seasonal component should 

be defined as the second subcomponent only, so that Holt-Winters’ method should be 

modified to a model of the form yt = pt|t−1 + st|t−1 +at, where pt and bt are given by (30), 

(31), 
n−1 

st = −
m

st−i + β(B)at, 
i=1 

−
�n−1 pt|t−1 = pt−1 + bt−1 and st|t−1 = i=1 st−i. The model can be simplified if we assume 

β(B) = k3. Another possibility is to decompose the seasonal component further according 

to the partial fraction expansion of its model, 

[n/2] 
β(z) ki,1 + ki,2zm

= (35) 
S(z) 1− 2αiz + z2 

i=1 
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where [x] denotes the greatest integer less than or equal x, αi = cosωi and ωi = 2πi/n 

is the i-th seasonal frequency. If n is even, ωn/2 = 2π[n/2]/n = π and the corresponding 

term in the sum on the right hand side of (35) collapses to kn/2/(1 + z). This would lead 

us to a seasonal component of the form 

[n/2] 

st = 
m

si,t (36) 
i=1 

(1− 2αiB + B2)si,t = (ki,1 + ki,2B)at, (37) 

where we can assume ki,1 = k1 and ki,2 = k2 for parsimony. It is a consequence of the 

partial fraction decomposition that there is a bijection between ARIMA models of the 

form (34) and exponential smoothing models, yt = pt|t−1 + st|t−1 +at, where pt and st are 

given by (30), (31), (36) and (37). A solution similar to (36) and (37) has been suggested 

by De Livera et al. (2011), where they propose for each component, sit, the model 

si,t cosωi sin ωi si,t−1 r1 = + at. (38) 
s ∗ − sinωi cosωi s ∗ r2i,t	 i,t−1 

We will see in the next section that both solutions are in fact equivalent. However, 

in De Livera et al. (2011, p. 1516, p. 1520) the expression yt = pt−1 + bt−1 +st−1 + at 

is used. This implies si,t|t−1 = si,t−1 in model (38), something that is incorrect. The 

correct expression can be obtained using the method described in Section 2.2 and, more 

specifically, formula (19). Thus, 

si,t+1|t cosωi sinωi si,t|t−1 cos ωi sinωi r1 = + at. 
s ∗ − sinωi cos ωi s ∗ − sinωi cosωi r2i,t+1|t	 i,t|t−1 

The expression for si,t|t−1 corresponding to si,t in (37) can be obtained by expanding model 

(37) using the forward operator, as described in Section 2.1. 

2.4	 Specification for Complex Models Using the Beveridge– 

Nelson Decomposition 

Sometimes, there are time series that follow ARIMA models with complex seasonal pat­

terns, like model (2). This is the case with hourly or daily data, that exhibit several 

seasonal patterns, some of them with even non integer seasonal periods. 
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Suppose first the ARIMA model
 

φ(B)∇2S(B)yt = θ(B)at, (39) 

where S(z) = 1 + z + · · · + zn−1 and the polynomials φ(z) and θ(z) have all their roots 

outside the unit circle and have degrees p and q, respectively. Then, its partial fraction 

expansion is 

[n/2] 
θ(z) r1 r2 ri,1 + ri,2z βc(z) 

= γ(z) + + + 
m 

+ , (40) 
φ(z)∇2S(z) 1− z (1− z)2 1− 2αiz + z2 φ(z)

i=1 

where αi = cosωi, ωi = 2πi/n is the i-th seasonal frequency and βc(z) and γ(z) have 

degrees p − 1 and max{0, q − p − n − 1}, respectively. Given that the models in (40) 

are simpler than the original model (39), the question arises as to whether it is better 

to specify the model starting with (40) rather than using (39). This motivates that we 

define the components 

pt = pt−1 + bt−1 + k1at (41) 

bt = bt−1 + k2at (42) 

[n/2] 

st = 
m

si,t (43) 
i=1 

(1− 2αiB + B2)si,t = (ri,1 + ri,2B)at (44) 

φ(B)ct = θ ∗ (B)at, (45) 

where k1 = r1 + r2, k2 = r2 and θ
∗(z) = γ(z)φ(z) + βc(z), so that the BN decomposition 

is 

yt = pt + st + ct. (46) 

To achieve parsimony, we can set in (44) ri,1 = k3 and ri,2 = k4. 

The specification (46) with the components following the models (41) to (45) has 

some similarities to the generalized exponential smoothing TBATS model proposed by 

De Livera et al. (2011). As we saw in Section 2.3, all linear exponential smoothing models 

should be the innovations form of some BN decomposition. However, in the TBATS 

models the innovations in (41) to (44) appear replaced with the stationary component, 
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ct. In addition, as we saw also in Section 2.3, there is an inconsistency in the definition 

of the seasonal component in the TBATS models. 

We now turn to the state space form of the BN decomposition (46). The model for 

the trend, pt, can be put into state space form as follows, 

1 1 k1 xp,t = xp,t−1 + at (47) 
0 1 k2 [ ]

pt = 1 0 xp,t, (48) 

where xp,t = [pt, bt] 
′ . If we define x̄p,t = Pxp,t, where 

1 0 1 0 
P −1P = , = , 

1 1 −1 1 

a change of variables in (47)–(48) leads to the state space form proposed by Akaike (1974), 

¯0 1 k1 x̄p,t = x̄p,t−1 + at (49) 
¯−1 2 k2 [ ]

pt = 1 0 x̄p,t, (50) 

where x̄p,t = [pt, pt+1|t], k̄1 = r1 + r2 and k̄2 = r1 + 2r2. The model (44) followed by the 

subcomponents, si,t, of the seasonal component, st, can be put into Akaike’s state space 

form as usual, 

0 1 ki,1 xsi,t = xsi,t−1 + at (51) 
−1 2αi ki,2 [ ]

si,t = 1 0 xsi,t, (52) 

where xsi,t = [si,t, si,t+1|t], ki,1 = ri,1 and ki,2 = ri,2 + 2αiri,1. If we make the change of 

variables x̄si,t = Pxsi,t in (51)–(52), where 

1 0 1 0 
P −1P = , = , 

−αi/ sinωi 1/ sinωi αi sinωi 

the following state space form is obtained, 

¯cos ωi sinωi ki,1 x̄si,t = x̄si,t−1 + at (53) 
¯− sinωi cosωi ki,2 [ ]

si,t = 1 0 x̄si,t. (54) 
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∗ ∗where x̄si,t = [si,t, s i,t], si,t is an auxiliary random variable, k̄i,1 = ri,1 and k̄i,2 = ri,2/ sinωi 

+αiri,1/ sinωi. Finally, the stationary component, ct, that follows model (45), can be put 

into Akaike’s state space form as in (14)–(15). 

Using the previous models for the components, and with an obvious notation, we get a 

state space form like (16). As shown earlier in this article, the corresponding innovations 

state space form is a generalized exponential smoothing model. It can be easily obtained 

by applying the procedure described in Subsection 2.2 or, more specifically, by using 

formula (19) to get (20). Note that the model for the trend can be either (47)–(48) or 

(49)–(50), and for the seasonal subcomponents we can use either model (51)–(52) or (53)– 

(54). As an example, consider again model (12). The state space form (16) is given by 

(22)–(23), and the corresponding innovations state space form is (24)–(25). 

The case of complex seasonal patterns can be handled by replacing st in (43) with st 
j= 

�N	 s , where the seasonal component, j=1 t

mj 

j j
m

s = si,t,t 

i=1 

has seasonal period nj and the subcomponents sj follow the model (44) with si,t, αi, ri,1i,t 

j j jand ri,2 replaced with s , cos (2πi/nj), r and r Here, mj is the number of harmonics i,t i,1 i,2. 

required for the j-th seasonal component. In the cases considered so far, it was mj = 

[nj/2], but with complex seasonal patterns it can be much smaller. The overall ARIMA 

model corresponding to this model is of the form 

N mj 

φ(B) ∇d (1− 2αi
jB + B2)yt − µ = θ(B)at, (55) 

j=1 i=1 

where d = 0, 1, 2 and αi
j = cos (2πi/nj). As described earlier, we can set in the previous 

j j j jmodel r = r and ri,2 = r to achieve parsimony. i,1	 1 2 

2.5	 Estimation and Forecasting Using the Beveridge–Nelson De­

composition 

Suppose that we have specified a state space model (16) as described in the previous 

section and that we have obtained its innovations state space form (20) by using formula 

(19). Once the model is in innovations form (20), we can apply the Kalman filter to 
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evaluate the likelihood. Since the model is nonstationary, the ordinary Kalman filter 

cannot be applied. We can use the diffuse Kalman filter (DKF) of de Jong (1991) instead, 

that allows for partially diffuse initial conditions. Given that pt and st are nonstationary, 

if Var(at) = σ2, the initial state vector would be x1|0 = Aδ + c, where A = [I, 0] ′ , δ is 

a diffuse vector conformal with [x ′ , x ′ ] ′ and c is a zero mean stochastic vector with p,t s,t

covariance matrix, V , satisfying 

V = FcV F c 
′ + (FcKf,c)(FcKf,c) 

′ σ2 . 

If we consider the whole initial state, x1|0, as fixed, we obtain the so–called conditional like­

lihood. In this case, the DKF has a very simple form. Given the sample, y = (y1, . . . , yn) 
′ , 

and letting x1|0 = β, the DKF is given for t = 1, . . . , n by the recursions 

(Et, et) = (0, yt)−H(−Ut, xt|t−1) (56) 

Σt = HPtH ′ + σ2 , Kt = (FPtH ′ + Kσ2)Σ−
t 
1 

(−Ut+1, xt+1|t) = F (−Ut, xt|t−1) +Kt(Et, et) (57) 

Pt+1 = (F −KtH)PtF ′ + (Kσ2 −Ktσ
2)K ′ , 

with initial conditions (−U1, x1|0) = (−I, 0) and P1 = 0. Thus, for all t, Pt = 0, Σt = σ2 , 

and Kt = K, so that the previous recursions collapse to (56) and (57) with Kt = K. Note 

that (56) and (57) without the augmented part coincide with the equations (20). Instead 

of using the additional DKF recursion (St+1, st+1) = (St, st) + σ−2Et 
′ (Et, et), initialized 

with (S1, s1) = (0, 0), to estimate the initial state, x1|0 = β, we can proceed in two steps. 

In the first step, (56) and (57) are run and the quantities et and Et are stored. In the 

second step, β is estimated in the regression model e = Eβ + a, where e = (e1, . . . , en) 
′ , 

E = (E1
′ , . . . , E n

′ ) ′ , a = (a1, . . . , an) 
′ and Var(a) = σ2I. In this way, β can be concentrated 

out of the conditional likelihood. The conditional log–likelihood is, apart from a constant, 

1 
λ(y) = − 

�
n ln |σ2|+ (e − Eβ̂) ′ (e − Eβ̂)/σ2

� 
,

2 

where β̂ = (E ′ E)−1E ′ e. The parameter σ2 can be concentrated out of the conditional 

log–likelihood and the σ2–maximized conditional log–likelihood, denoted by λ(y; (σ2), is 

1 
λ(y; (σ2) = constant − n ln 

[
(e − Eβ̂) ′ (e − Eβ̂)

]
,

2 
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σ2 (e − Eβ̂) ′ (e −E ̂where ( =	 β)/n. 

To estimate model (55), we have to maximize λ(y; (σ2) with respect to the parameters 

of the model. The stationary autoregressive parameters are in matrix F and correspond 

to the coefficients of the polynomial φ(z). They can be kept in the stationarity region 

during the estimation process using standard procedures. However, it is more difficult 

to keep the parameters of the moving average polynomial, θ(z), within the invertibility 

region, especially if the model has been specified using the parallel decomposition. As 

mentioned earlier in Section 2.2, the eigenvalues of the matrix Fp = F − KH coincide 

with the inverses of the roots of θ(z). Since the parameters of the moving average part are 

all in matrix K, one way to enforce that these parameters are in the invertibility region 

is to obtain first the eigenvalues of Fp, using the stable Schur decomposition for example. 

If there are some eigenvalues that have modulus greater than one, we invert them to get 

′ )−1matrix F p, say. Then, we obtain a new vector K as K = (F − F p)H ′ (HH and new 

moving average parameters from it. 

Once all of the parameters in the model (55) have been estimated, we can apply the 

Kalman filter to obtain the forecasts in the usual way. Assuming the innovations have a 

Gaussian distribution, we can also obtain confidence intervals for the forecasts. 

2.6	 Signal Extraction Using the Beveridge–Nelson Decomposi­

tion 

Suppose the BN decomposition (5) corresponding to model (1). We can estimate the 

unobserved components by expressing the innovations, at, in their models (6) in terms of 

the series, yt. In the case of the trend, for example, the estimator is 

αp(B)φ(B)Φ(Bn)S(B) 
∞ 

p̂t =	 yt = 
m

πiŷt−i,
θ(B)Θ(Bn) 

i=0 

where ŷt = yt if t = 1, . . . , n and ŷt is the backcast of yt if t ≤ 0. Note that, because the 

model is assumed invertible, 
�∞ 

i=0 |πi| < ∞. For the example (12), the trend estimator is 

1 +B + B2 + B3 

pt = yt. 
1− (1/2)B5 8

To obtain the estimators given by the BN decomposition, one can use the state space form 

(16). Once the model is in state space form, the DKF and its corresponding smoother 

1 
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give the component estimators and their mean squared errors.
 

It is to be noticed that if the semi–infinite sample, {. . . , y1, y2, . . . , yN}, is available, 

the filters that result from the BN decomposition to estimate the unobserved compo­

nents are asymmetrical. In this case, they are appropriate only to obtain the concur­

rent estimators of these components. If estimators based on the doubly–infinite sample, 

{. . . , y1, y2, . . . , yN , . . .}, are required, then one should use MSOE models, for which the 

Wiener–Kolmogorov filters to estimate the components are symmetrical. To see the con­

nection between MSOE and SSOE models, suppose the MSOE model 

xt+1 = Fxt + Gut (58) 

yt = Hxt + vt, t = 1, . . . , n, (59) 

where   
ut Q S 

E [u ′ s, v s
′ ] = δts, 

vt S ′ R 

E(ut) = 0, E(vt) = 0, the initial state vector, x1, is orthogonal to ut and vt for all t, 

E(x1) = 0 and Var(x1) = Ω. For example, consider the simple MSOE model 

pt = pt−1 + dt 

st = −st−1 + et, 

and yt = pt +st +ct, where pt is the trend, st is the seasonal component and the sequences 

{dt}, {et} and {ct} have zero mean and are mutually and serially uncorrelated with Var(dt) 

= σd
2, Var(et) = σe 

2 and Var(ct) = σc 
2 . Then, xt = [pt, st] 

′ , ut = [dt, et] 
′ , vt = ct and 

1 0 1 0 σ2 0 
F = , G = , Q = d H = [1, 1], R = σc 

2 , S = 0. 
0 −1 0 1 0 σe 

2 

Assuming that the conditions for the existence of a unique solution, P , of the discrete 

algebraic Riccati equation corresponding to (58)–(59), 

′ ′ ′ P = FPF + GQG ′ − (FPH + GS)(R + HPH ′ )−1(FPH + GS) ′ , (60) 

are satisfied, the steady state form of the Kalman filter is given by the equations (20) 

with Var(at) = Σ, where xt|t−1 is the estimator of xt based on the semi–infinite sample 

{. . . , y1, y2, . . . , yt−1}, and 

′ ′ ′ ′ Σ = R + HPH , K = (FPH + GS)Σ−1 , P = FPF + GQG ′ −KΣK . (61) 
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Equations (20) are the innovations form corresponding to the reduced form ARIMA model 

of (58)–(59). The formula for the filtered estimators, also called measurement update, 

corresponding to the steady state is 

xt|t = xt|t−1 + Kfat, 

′ Σ−1where Kf = PH . It is immediately seen from the equations of the time and mea­

surement updates corresponding to the steady state of the Kalman filter that if S = 0, 

then FKf = K, xt+1|t = Fxt|t and 

xt|t = Fxt−1|t−1 + Kfat 
(62) 

yt = Hxt|t + (1 −HKf) at. 

If we define ct|t = (1−HKf) at and redefine equations (62) so that the state vector xt|t 

is enlarged to [xt
′
|t, ct|t] 

′ , then these redefined equations constitute in fact the state space 

form of the BN decomposition of the reduced form ARIMA model of (58)–(59). This can 

be verified as in Section 2.2, when passing from an innovations state space form to the 

state space form of the BN decomposition. Note that we have obtained (62) assuming S 

= 0, that is, that the signal, Hxt = pt + st, is uncorrelated with the noise, vt. Note also 

that in (62) the BN components are defined as the filtered estimators of the components 

in (58)–(59). This implies that the filters for the concurrent estimators based on the 

semi–infinite sample given by the BN decomposition corresponding to (62) coincide with 

those given by (58)–(59). 

If we want symmetric filters to estimate the components in (58)–(59) using smoothing 

and the doubly–infinite sample, {. . . , y1, . . . , yN , . . .}, in addition to assuming S = 0, we 

should further assume that pt, st and ct are orthogonal. 

3 Application 

In this section, we use the specification based on the BN decomposition described earlier 

on Section 2.4 with three real series that have different seasonal patterns. The series are 

the monthly airline series of Box and Jenkins (1976), the quarterly U.S. real GDP series 

of Oh et al. (2008) and the weekly U.S. Gasoline Data of De Livera et al. (2011). The 

three series can be seen in Figure 1. 
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Figure 1: Series With Different Seasonal Patterns. (a) Monthly airline series of Box and 

Jenkins (1976). (b) Quarterly U.S. real GDP series of Oh et al. (2008). (c) Weekly 

U.S. Gasoline Data of De Livera et al. (2011). 

Each series was split into two parts: an estimation sample period and a sample to 

compare forecasts with actual values. The estimation sample was used to obtain the 

conditional likelihood estimates of the model parameters. 

The specification for the logged monthly airline series consists of equations (41)–(42) 
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¯for the trend, and equation (43), where n = 12 and si,t follows (53)–(54) with k̄i,1 = k1 

¯and k̄i,2 = k2, for the seasonal component. The stationary component, ct, is white noise. 

The last 48 observations were reserved to assess forecasting performance. 

The logged quarterly U.S. real GDP series is assumed to follow one of the models in 

Oh et al. (2008), namely ARIMA(0, 2, 2). Thus, the specification consists of equations 

(41)–(42) for the trend, and a stationary component following white noise. The last 12 

observations were hold out to compare forecasts with actual values. 

Finally, the specification for the weekly U.S. Gasoline Data of De Livera et al. (2011) 

consists of equations (41)–(42) with a constant slope for the trend, and one seasonal 

component, st = 
�m

i=1 si,t, with non–integer seasonal period, n = 365.25/7 = 52.179, and 

a number of harmonics m = 7. Each harmonic, si,t, follows equations (53)–(54) with k̄i,1 

¯ ¯= k1 and for k̄i,2 = k2. The stationary component, ct, is assumed to follow an AR(1) 

model, (1 + φB)ct = k3at. The last 261 observations were reserved to assess forecasting 

performance. 

The estimated parameters for the three models are given in Table 1. The parameters 

were constrained to provide an invertible and stationary model. 

In Figure 2, we can see the airline series of Box and Jenkins (1976) together with the 

three components given by the BN decomposition. All of the series correspond to the 

estimation sample. For the last 48 observations, the forecasts produced by the model and 

the actual values are also shown. 

In Figure 3, the quarterly U.S. real GDP series of Oh et al. (2008), together with 

the trend and the cycle given by the BN decomposition, are shown. All of the series 

correspond to the estimation sample and, in the case of the cycle, the NBER expansion 

and contraction dates for the selected period are indicated. For the last 12 observations, 

Table 1: Estimated parameters for each model based on the BN decomposition 

Parameters
 

¯ ¯Data k1 k2 k1 k2 φ 

Airline 0.5082 0.0074 0.0398 0.0227 

Real GDP 1.2419 0.1933 

Gasoline 0.0500 0 0.0003 0.0008 0.2000 
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Figure 2: Airline Series in logs with its estimated BN components and 48 forecasts. 

we can also see the forecasts produced by the model and the actual values. 

Finally, in Figure 4, we can see the weekly U.S. Gasoline Data of De Livera et al. 

(2011) together with the three components given by the BN decomposition. All of the 

series correspond to the estimation sample. Also, for the last 261 observations, we can 

see both the forecasts produced by the model and the actual values. 

24
 



 

 

 

 

 

 

 

 

6 

6.5 

7 

7.5 
US GDP (in logs) 

Q1−50 Q1−55 Q1−60 Q1−65 Q1−70 Q1−75 Q1−80 Q1−85 Q1−90 Q1−95 Q1−00 

Q1−50 Q1−55 Q1−60 Q1−65 Q1−70 Q1−75 Q1−80 Q1−85 Q1−90 Q1−95 Q1−00 
6 

6.5 

7 

7.5 
Trend 

x 10
−4 

−10 

−5 

0 

5 Cycle 

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 

−10 −8 −6 −4 −2 0 2 4 6 8 10 12 

6.825 

6.83 

6.835 

6.84 
Original 
Forecast 

Figure 3: U.S. real GDP in logs with its estimated BN components and 12 forecasts. The 

NBER expansion and contraction dates are indicated for the cycle. 
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