PROGRAMA 49LB

C12 I02 PROGRAMA DE IMPULSO DE LA COMPETITIVIDAD Y SOSTENIBILIDAD INDUSTRIAL. OTRAS ACTUACIONES DE CARÁCTER ECONÓMICO

1. DENOMINACIÓN DEL COMPONENTE

Política Industrial España 2030.

2. DESCRIPCIÓN GENERAL DEL COMPONENTE

El objetivo general del componente es impulsar la modernización y la productividad del ecosistema español de industria-servicios, mediante la digitalización de la cadena de valor, el impulso de la productividad, la competitividad y la mejora de la eficiencia energética de los sectores estratégicos claves en la transición ecológica y la transformación digital.

En este sentido el Centro Español de Metrología (CEM), creado por la Ley 31/1990 de Presupuestos Generales del Estado de acuerdo con lo previsto en la Ley 3/1985, de 18 de marzo, de Metrología, juega un papel importante ya que, entre otras funciones tiene la de proporcionar trazabilidad a la red de laboratorios de calibración y ensayo y a la industria, la coordinación y aplicación de la metrología legal y la ejecución de proyectos de I+D+i en materia metrológica. Además, es un actor importante dentro de la infraestructura de la calidad nacional.

3. PRINCIPALES OBJETIVOS DEL COMPONENTE

Desarrollar el Componente 12 supone abordar desde tres ámbitos diferentes, los principales retos para la consecución de los fines que persigue el Plan de Recuperación, Transformación y Resiliencia: impulsar la modernización y la productividad del ecosistema español de industria y servicios, mediante la digitalización de la cadena de valor, el impulso de la productividad y de la competitividad de los sectores estratégicos claves en la transición ecológica y la transformación digital.

En el caso del CEM esto significa por un lado su actualización mediante la implementación de un Plan de transformación digital que permita por una parte simplificar, automatizar y homogeneizar sus procesos para incrementar la eficiencia y transparencia, y por otra parte ofertar nuevos servicios digitales demandados por la sociedad y por otro lado la orientación especializada del CEM a la resolución de los nuevos retos sociales en energía y salud y la implementación de las tecnologías cuánticas de segunda generación.

4. DESCRIPCIÓN DE LA INVERSIÓN

El Plan de Modernización del CEM pretende reforzar a través de la digitalización, simplificar y homogeneizar los procesos y con ello incrementar su eficiencia y transparencia, mejorando la accesibilidad a la información, mejor y más estrecha comunicación con los sectores industriales, académicos, y de investigación que permitan un conocimiento las necesidades reales en cada momento. Los servicios y sus resultados deben ser, entre otras cosas, a) digitales de manera predeterminada (lo que resulta en información legible por máquina); b) interoperable por defecto y c) resultados confiables y seguros.

Dentro de este Plan de Modernización del CEM se plantean tanto la digitalización como la realización de programas que respondan a los nuevos retos sociales como son los ámbitos de metrología para la salud, las energías limpias y los patrones cuánticos de frecuencia para aplicaciones en la fabricación inteligente, la salud, o la lucha contra el cambio climático. Las líneas de actuación del Plan de Modernización del CEM son las siguientes:

- Plan de Transformación Digital, la transformación digital es uno de los retos que están afrontando en sus estrategias los países, las compañías y las organizaciones a nivel global y por lo tanto debe afrontar el CEM. El plan de transformación digital del CEM pretende iniciar la transformación digital, marcando el camino a recorrer en los próximos años de forma estructurada, coherente y en consonancia con las líneas fundamentales de la Estrategia del Mercado Único Digital Europeo, la Agenda Digital Española, el Plan de Transformación Digital de la Administración General del Estado y sus Organismos y más en particular, alineado con las estrategias y acciones tomadas en los senos de los organismos de metrología internacionales y europeos, como el BIPM, EURAMET y WELMEC.
- Programa de desarrollo de la metrología para la salud: a través de un laboratorio
 de referencia que permita garantizar la bondad de las mediciones de los
 instrumentos utilizados en el diagnóstico y tratamiento de enfermedades y en la
 metrología química y biológica. El CEM coordinará desde el punto de vista
 metrológico, las actuaciones que permitan dotar de trazabilidad a los instrumentos
 de medida para diagnóstico y tratamiento de las enfermedades, colaborando con
 las autoridades sanitarias responsables del control de dichos instrumentos.
- Programa de desarrollo de energías limpias: diseño y desarrollo de sistemas energéticos, asequibles, eficientes y no contaminantes en ámbitos como: la

metrología del hidrógeno o las estaciones de carga de vehículos eléctricos; combustibles alternativos (biogás) con el desarrollo de materiales de referencia para determinación de impurezas y estudio de propiedades físico-químicas; energía solar térmica: trazabilidad en las medidas de temperatura y flujo y energía eólica: trazabilidad en las medidas de par y en la caracterización de aerogeneradores mediante sistemas de seguimiento láser (láser trackers).

• Programa de desarrollo de la metrología basada en patrones cuánticos de frecuencia para aplicaciones en la fabricación inteligente, la salud, o la lucha contra el cambio climático. El desarrollo de las capacidades de medida y de nuevos patrones basados en las tecnologías cuánticas es una de las premisas básicas para la superación de las barreras en la implantación de estas tecnologías en el entorno empresarial y social. En la actualidad, las posibilidades de manipular los efectos cuánticos en sistemas personalizados y materiales nos llevan a la llamada segunda revolución cuántica, donde se están desarrollando dispositivos y sensores de medida de mayor exactitud y capacidad, como pueden ser relojes atómicos ópticos, sensores cuánticos de gravedad, magnetómetros cuánticos / electrómetros, acelerómetros, resonancia magnética nuclear mejorada (RMN), etc. Las aplicaciones de estas tecnologías van desde la explotación de los recursos naturales, ingeniería civil, control de calidad y seguridad, posicionamiento y navegación en interiores, salud, telecomunicaciones, seguridad y defensa, o incluso en el ámbito financiero (estampación, certificación y aplicaciones).

5. COSTE DE LA INVERSIÓN Y DISTRIBUCIÓN ANUALIZADA

(Miles de euros)

PERIODIFICACIÓN	2020	2021	2022	2023	2024	2025	2026	Total
Coste del Mecanismo		1.400	7.630	7.410				16.440
Otra financiación								
Total		1.400	7.630	7.410				16.440

6. HITOS Y OBJETIVOS DE LA INVERSIÓN

El Plan de Transformación Digital del CEM se estructura en dos ejes estratégicos con dos y tres objetivos estratégicos cada uno de ellos, respectivamente. Cada objetivo se estructura en líneas de actuación a las que a su vez se les asigna acciones:

Eje I. Asegurar la viabilidad de la transformación digital del CEM.

O1: Infraestructura y RRHH para la digitalización.

O2: Automatización y conectividad de equipos e instalaciones.

Eje II. Reforzar la posición del CEM mediante la prestación de servicios digitales orientados al cliente.

O3: Gestión digital: hacia la oficina sin papeles.

O4: Impulsar la creación y desarrollo de plataformas digitales nacionales y europeas.

O5: Desarrollo de los servicios digitales y on-line.

El Programa Metrológico para la Modernización del CEM llevará a cabo los siguientes objetivos:

SALUD

- Desarrollo de la segunda generación de un sistema que permita dar trazabilidad a las medidas de presión arterial.
- Desarrollo de un sistema que permita dotar de trazabilidad a los electrocardiógrafos.
- Desarrollo de un sistema que permita dotar de trazabilidad a los ecógrafos.
- Desarrollo de un sistema que permita dotar de trazabilidad a medidas dimensionales (TC, RMN, radiografías ...).
- Desarrollo de un laboratorio de magnetismo, que permita dar trazabilidad a las medias de campos magnéticos, que afectan a la salud o se utilizan para su diagnosis y/o tratamiento.

ENERGÍAS LIMPIAS

- Desarrollo de un sistema para la caracterización metrológica de estaciones de carga y baterías para vehículos eléctricos.
- Desarrollo de la infraestructura para proporcionar trazabilidad de medidas de para en generadores de energía eólica.
- Desarrollo de un laboratorio de calibración de fibras ópticas para su uso en centrales de concentración solar y eficiencia energética.
- Desarrollo de la infraestructura metrológica para proporcionar trazabilidad en las medidas de pureza de hidrógeno.

CUÁNTICA

- Desarrollo de un dispositivo interferómetro Fabry-Perot dual para la medida de la presión.
- Desarrollo de un sensor de temperatura cuántico.
- Desarrollo e implantación de un reloj óptico de trampa de iones.
- Desarrollo de patrones cuánticos de tensión.
- Materialización del kilogramo basado en la constante de Plank.