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Abstract

Butterworth filters are low—pass filters widely used in electrical engineering. It
is shown in the paper that they can be obtained as the solution to a simple signal
extraction problem. Details to design and construct Butterworth filters and band—
pass filters based on them are given and it is shown how these fixed filters can be
applied to economic time series to estimate smooth trends and/or business cycles.
If, in addition, a model for the input series is available, a two—step procedure is
proposed which circumvents many of the problems of ad-hoc filtering and can
significantly improve the quality of the estimated signal.

Keywords: Kalman filter; Signal extraction; ARIMA components model; Smoothing;
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1 Introduction and Summary

Suppose a time series z =(z1,...,2n)" generated by the signal-plus—noise
model
Zp = 84 + ny, (1)

where 38; is the signal, which in the examples that will interest us will be
the trend component, and n, is a white noise process independent of s;.
We make the following assumptions. The signal s; follows the ARIMA model
#(B)a(B)s; = 8,(B)b;, where the polynomial a(B) in the backshift operator,
B*s; = s;_y, has all its roots on the unit circle and degree d, the polynomial
#(B) has all its roots outside the unit circle and degree p, the polynomial
6,(B) has all its roots on or outside the unit circle and degree g,, and the
variables b, are uncorrelated with the n,. Also, {b;} and {n;} are serially
uncorrelated processes with mean zero, Var(b;) = of and Var(n;) = o2. The
model (1) is nonstationary if d > 0.

These assumptions imply that the process {z:} follows the so called
reduced form ARIMA model ¢(B)a(B)z: = 0(B)a;, where the coefficients
in (B) and the variance of a4, are obtained from the equality 8(B)a; =
6,(B)b, + ¢(B)a(B)n,. If z is nonstationary, we further make assumption A
of Bell (1984).

To estimate the signal s; in (1), three different approaches, which will be
labeled A, B and C, can be considered.

A) Cast model (1) into state space form and apply any of the existing
algorithms based on the Kalman filter which can handle nonstationary
state space models, followed by a corresponding smoothing algorithm.
The proposed algorithms are a simple modification of the diffuse Kal-
man filter of De Jong (1991), properly initialized, and the diffuse fixed
point smoother.

B) Make assumption A of Bell (1984) and apply the Wiener—-Kolmogorov
filter and Tunnicliffe Wilson’s algorithm like in Burman (1980).

C) Apply penalized least squares smoothing, which can be described as
follows. Let u; = a(B)s, t =d+1,..., N, u = (ug41,...,un)’, Var(u)




= Q and Var(n:) = A in (1). Then, the problem is minimize

N
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Note that the only approach that allows for the computation of the mean
squared errors (MSE) of the estimators is approach A. Using the results of
Maravall (1995), approach B can also give the MSE. However, approach A
is more flexible and can be easily generalized to the case where, for example,
there may be missing observations in model (1) and/or regression variables,
where the results of approach B cannot be applied.

Two of the existing approaches to handle nonstationary state space mo-
dels deal with the problem in all its generality. These are the Diffuse like-
lihood approach of De Jong (1991) and the marginal likelihood approach of
Ansley and Kohn (1985). De Jong (1991) proposed an algorithm, which he
called the Diffuse Kalman filter, hereafter referred to as DKF, and Ansley
and Kohn (1985) proposed a “modified Kalman filter”. This last filter was
difficult to implement with existing software and was also conceptually dif-
ficult. Recently, Koopman (1997) has proposed an algorithm which is based
on the idea of the modified Kalman filter, but is more efficient and a lot
simpler to implement. There are also smoothing algorithms corresponding
to the approaches of De Jong and Ansley and Kohn, called diffuse smoother
and modified smoother.

When the process z; is stationary, it is well known that applying the
Kalman filter and a smoothing algorithm to estimate the signal s; in (1) is
equivalent to first applying the Wiener-Kolmogorov filter to obtain the esti-
mator based on the doubly—infinite sample and then projecting this estimator
on the finite sample. This last projection replaces the unkown values in the
first estimator with forecasts and backcasts. Bell (1984) proved that, un-
der an assumption which he called assumption A, the Wiener—-Kolmogorov
filter could also be applied to a complete realization in the nonstationary
case. Assumption A of Bell (1984) is a usual one when forecasting with
ARIMA models, see Brockwell and Davis (1992), p. 317. In the finite nonsta-
tionary situation, the equivalence between Kalman filtering plus smoothing
and Wiener-Kolmogorov filtering, applied like in Burman (1980), has been
proved by Gémez (1997). The proof was needed because the approach propo-
sed by Burman (1980) lacked a sound theoretical foundation and the results
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of Bell (1984) were not applicable to finite nonstationary series.

The use of approach C can be traced back to Whittaker (1923), who
suggested that the solution of the minimization problem balance a trade—off
of goodness of fit to the data and goodness of fit to a smoothness criterion.

A famous example of approach C is the filter proposed by Hodrick and
Prescott (1980), hereafter referred to as HP filter, where the particular values
A=1600, 2= 1, and a(B) = V?, V = 1— B, are proposed when it is used with
quarterly series. It is well known (see, for example, King and Rebelo, 1989),
that the HP filter can be given a signal extraction interpretation. That is, the
filter is obtained as the filter that corresponds to the estimator of the signal
$; in (1), under the assumption that s; follows the model V%s;, = b; and {b;}
is a white noise sequence with mean zero and variance 1, independent of the
nt, and Var(n;) = 1600. Since s; and z; are nonstationary, under assumption
A of Bell (1984), the Wiener-Kolmogorov filter can be applied to a infinite
realization of z; to obtain the minimum mean squared error estimator
of the signal s;. The estimator §; is given by an infinite symmetric filter

Hyup(B, F)

& = Hgp(B, F)z = vozs + Y vi(B* + F*)z, (2)
k=1

where F'is the forward operator, F¥z, = z,,;. The weights »;, can be obtained
from the signal extraction formula

Hip(B, F) = 1/(1+ X(1 - BY¥(1 - FY). 3)

The question then arises as to whether the finite version of the signal
extraction estimator, which, intuitively, is obtained by replacing in (2) the
unknown z; with forecasts and backcasts, can be computed with the appro-
ches A and B and if the results of the three approaches coincide.

It is shown in Gémez (1997) that, under the appropriate assumptions in
the unobserved components model (1), the three approaches to estimate s;
yield the same result. The algorithmical details are reviewed in appendix A
for completeness. These algorithms are implemented in the programs written
by the author and used in the applica,fions later in the paper.

The frequency response function Hgp(2) of the filler Hgp(B, F) is ob-




tained by replacing B with e™* in (3). After some manipulation, we get

. 1
Hyp(z) = . s (4)
L+ ()

where . is the frequency that corresponds to Hyp(z) = 1/2 and A = 1/
(16sin*(z./2}). Since (4) is a real number, it coincides with the gain function
of the filter and there is no phase effect. Expression {4) is a special case of
the squared gain of a Butterworth filter of the sine version (BFS), which is

given by .

sin{x 2d>
1+ (&65)
where |G(z.)|* = 1/2. These filters are low—pass filters that depend on two
parameters, d and z., and, if z. is fixed, the effect of increasing d is to
make the fall sharper. See figure 1. They are autoregressive filters of the
form H(B) = 1/0(B), where 8(B) = 0y + ;B + --- + ;8% and |G(2)|? =
H{e™™)H(e™). It will be shown later that the denominator in (3) can be
factored as 8(B)0(F), where §(B) is a polynomial in B of degree 2. We can
say then that the filter Hyp(B, F) is a “symmetrized” form of a BFS, since
Hyp(B,F) = H(B)H(F), where H(B) = 1/8(B).

The analogy between (4) and (5) suggests that BFS can be given a signal
extraction interpretation. This result is proved in the paper for BFS, for
Butterworth filters of the tangent version (BFT) and for band-pass filters
derived from BFS and BFT. Therefore, for all the symmetrized forms of
these filters, which are of the form H(B)H(F'), where H(B) is a quotient of
polynomials in B, the three approaches, A, B and C, can be used to obtain
the filtered series when the filter is applied to a finite series z = (#,..., 2~)".

Another question that arises naturally is the following. When symme-
trized BFS or BFT are applied and approach B is used, the forecasts and
backcasts are obtained with the model implied by the filter and not with an
appropiate model fitted to the series. If we could combine both the ARMA
structure of the filter and an appropriate model for the series, the perfor-
mance of the filter would be improved. This topic is investigated in the
paper and it is shown that, when using approach B, it is possible to develop
a kind of Tunnicliffe Wilson’s algorithm for this case. It is also shown that,
instead of using a paralell realization in the Tunnicliffe Wilson’s type of algo-
rithms, a cascade implementation is possible that, in many cases, is simpler

|G (z)|* =

(5)
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Figure 1: Squared Gain of Butterworth Filters

and more convenient. Fixed ARMA filters can also be applied to components
of an unobserved ARIMA components model to obtain smoother trends or
business cycle estimates and this is shown with two economic time series.
The structure of the paper is as follows. Butterworth filters are considered
in Section 2, where it is shown how their time domain representation can be
obtained from the frequency domain formula. It is also proved that the
symmetrized forms of these filters can be obtained as the solution to a signal
extraction problem. In Section 3, a transformation is proposed that allows
for the construction of band-pass filters from low—pass filters. Section 4 gives
the details for the design of low—pass and band-pass filters. In Section 3, it
is shown how fixed filters should be applied to finite series which are known
to follow an ARIMA model and also to components of an unobserved ARIMA
components model. Finally, in Section 6, two examples are given of the
application of the techniques described in the paper to economic time series.







2 Butterworth Filters

Butterworth filters are low—pass filters widely used in electrical engineering.
We consider only the digital forms of these filters, which are of two types.
The first one is based on the sine function and will be referred to as BFS,
whereas the second one is based on the tangent function and will be referred
to as BFT. See Otnes and Enochson (1978).

In the previous section, we saw that a BFS depends on two parameters,
d and z,. This last parameter is the frequency at which the squared gain
of the filter is equal to 1/2. By increasing d, the fall of the squared gain
function can be made sharper. We also saw in the previous section that the
HP filter is a symmetrized form of a BFS which depends only on z. because
d is fixed and equal to 2. Therefore, if we are looking for a low—pass filter
that should adapt itself as much as possible to an ideal filter, we find in the
symmetrized forms of BFS a much wider class of filters than if we consider
the HP filter with a varying z.. In fact, by choosing d and z. adequately,
we can theoretically approximate an ideal low—pass filter using symmetrized
BF'S as much as we like.

The squared gain function of a BFT is given by (5) with the sine function
replaced with the tangent function. That is, the squared gain function of a

BFT is
1

tan(x/2) } 24’
L+ ()
where, like in the case of a BFS, |G(z.)|®> = 1/2. The effect of increasing d
is also to make the fall sharper, like with BFS.

It is a remarkable fact that symmetrized BFS and BFT can be obtained
as best linear estimators, in the mean squared sense, of the signal in models
like (1). The decomposition is given by an IMA(d,0) signal plus white noise
for BFS, and by an IMA(d,d) signal plus white noise for BFT; in this last
case the MA polynomial is (1 4 B)¢. Thus, for example, when d = 1, the
BF'S yields the “random walk plus noise” model, and the BFT its canonical
version (because there is a spectral zero at frequency z = ). When d = 2,
as we saw in the previous section, the BFS yields the HP filter.

The following two theorems, whose proofs are in Appendix B, give the
details of this interpretation.

|G(=)|* = (6)




Theorem 1 Suppose a BFS with parameters d and z.. Then, the squared
gain function of this filter coincides with the gain of the filter obtained by the
Wiener-Kolmogorov formula

1
CTIFNI—B)Y1-F) ()

§

to estimate the signal sy in model (1), where s; follows the model V?s; = b,
and X = ¢2[o? is given by A = 1/ [22dsin2d(:cc/2)] . Moreover, the reduced
form ARIMA model for z, which corresponds to this filter is V¢z, = 6(B)ay,
where 6{B) = [1-_, 6,(B), k is the integer part of (d +1)/2, and the 8;(B)

and the variance 62 of a, are given by the formulae

BG(B) = 1+ 91,53 + 92,532, 9‘7-’5 = ngﬁ./ao’h ] — 172
®oi = C+\/D—i+\/(c+\/D;)2 -1
o2; = C+\/Di—\/(0+~,/Dz~)2—1

m; = AC—-+Dy), i=1,...,k

k
2 2
O'u = A H ao’_i,

=1

where C = sin?(z./2), D; =1 —2Ccos((w + 2(i — 1)7)/d) +C?, and, if d is
odd, 0,(B) has degree one instead of two and agp = VvC +C ¥1, oy =
VC — /C +1. Using the reduced form model, equation (7) can be rewritten
as §;= H(B)H(F)z, where H(B) = 1/(0.8(B)).

Theorem 2 Suppose a BFT with parameters d and z.. Then, the squared
gain function of this filter coincides with the gain of the filter obtained by the
Wiener—Kolmogorov formula

. (1+ B)¢(1+ F)?
=TT B By A0 - B Ty @

to estimate the signal s; in model (1), where s; follows the model Vis; =
(1 4+ B)3b, and A = o2/ol is given by X = 1/tan’¥(2./2). Moreover, the
reduced form ARIMA model for z, which corresponds to this filter is V2 =
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8(B)a:, where 0(B) = [1%, 8:(B), k is the integer part of (d+1)/2, and the
0;(B) and the variance o2 of a; are given by the formulae

gﬂ(B) =1 + al,iB -+ 92,6B2, 9]”5 = aj,i/ao,i, ] = 1, 2

ag; = CP414C/2(1-Dy)
\/7

;i = CP41-Cyf2(1 - D)

1

i = 2(C*—-1), i=1,...,k

k
2 2
g, = ’\ H aO,ia

i=1

where C' = tan(z./2), D; = cos((x+2(i —1)x)/d) and, if d is odd, 8;(B) has
degree one instead of two and gy, = C+ 1, oy p = C —1. Using the reduced
form model, equation (8) can be rewritten as §,= H(B)H(F')z;, where H(B)
= (14 B)*/(0,0(B)).

Note that the theoretical signal for a BFT is canonical, because the pseu-
dospectrum of s; is zero at the 7 frequency, whereas the one for a BFS is not.
This will manifest itself in the fact that BFT will be better approximations to
ideal low—pass filters than BFS, although for small values of d the difference
will not be substantial.

The two previous theorems show that any of the three approaches consi-
dered in this paper can be applied to obtain the finite version of the filtered
series H(B)H(F)z,, where H(B) is a BFS or a BFT. Note, therefore, that
whenever we apply any of the three approaches to estimate the signal in
models implied by Butterworth filters we are using the symmetrized forms
of these filters.

EXAMPLE 1 Suppose a yearly univariate series z = (z1,...,2x)" which
follows the model z; = s; + n;, where the model for the signal s; is Vs; =
b, with 02 = 2 and of = 1. Then, the series z; follows the model Vz; =
(1 4+ #B)a; and the parameters # and ¢ = Var(a:) can be obtained from
theorem 1. Specifically, d = 1, A =2,C =1/(4)) =1/8, g = V2 and oy =
—+/2/2. This implies 62 = 4 and 0 = o /o = —1/2.

EXAMPLE 2 Consider the HP filter for quarterly series, which can be obtai-
ned by signal extraction from model (1) under the assumption that s, follows

9




model V2s; = b, 02 = 1 and 6% = A = 1600. According to theorem 1, the
HP filter is a symmetrized BFS and the reduced form ARIMA model for z; is
V22 = 0(B)ay, where 0(B) = 1+ 0B + 6,82, C = 1/160, ap = 1.1184, a3
= —1.9875 and oy = .8941. This implies §; = —1.7771, §; = .7994 and o>
= 2001.4.
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3 Band-Pass Filters

Band-pass filters are filters that let pass only those components whose frequ-
encies are in a pre-selected band. These filters can be obtained from low—pass
filters by means of a transformation. See Oppenheim and Schaffer (1989),
pp. 430-434. Let [2,,,2p,], where 2,, > 0 and z,, < z,, < 7, be the pass
band. Then, a suitable transformation is z = —s(s — a)/(1 — as), where «
= cos((2p, + p,)/2)/ cos((2p, — 2p,)/2). Using the inequalities

0< (wm - mp1)/2 < (g, + 2,)/2 < T — (2, — Tp,)/2

and the fact that the cosine function is decreaging in the interval [0, 7], the
inequalities —1 < a < 1 hold.

If we apply the previous transformation to a symmetrized BFS, then the
following band-pass filter Hys( B, F') is obtained

(1 —aB)¥(1 - aF)?
(1 —aB) 1 — aF)¢+ A1 - 2aB + B?)¢(1 - 2aF 4+ F2)¥

H,s(B,F) =

which is the Wiener-Kolmogorov filter to estimate the signal s; in model (1)
when s; follows the model (1 — 2aB + B%)%s; = (1 — aB)%; and A = o%/0o}
is like in theorem 1. Since —1 < & < 1, we can write & = cosf for a certain
0 € [0,7], so that the polynomial 1 — 2B + B? has two complex conjugate
roots of unit modulus.

If the previous transformation is applied to a symmetrized BFT, then the
following band-pass filter H,,(B, F') is obtained

(1-BH'(1 -~ F?)*
(1 = B2)¥(1 — F?)? + A(1 — 2aB + B*)¥(1 — 2aF + F?)¢’

Hpbt(Ba F) =

which is the Wiener-Kolmogorov filter to estimate the signal s; in model (1)
when s; follows the model (1 — 2aB + B%)*s; = (1 — B%)%,; and X = o2 /o?
18 like in theorem 2. Note that in this case the pseudospectrum of the signal
18 canonical, since it is zero at both the zero and the = frequencies.

The denominators of Hy,(B, F) and Hyy(B, F') can be factored as 8*(B)
x§*(F)a?, where 8*(B) = []%_, 05(B) and k is the integer part of (d +1)/2.
The polynomials 8f(B) are obtained from the corresponding #;(B) polyno-
mials of the low—pass filters. For example, if §;(B) = 1 + 6,,;B + 0;,;B%,
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then

0:(B) = 1+4a(bs;—2)B+[e*(1 —8y; + 0y;) — 6,,]B*
+C¥(01',' — 292’;)33 -|- 92_,‘B4.
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4 Design of Low—Pass and Band—Pass Filters

Suppose we want to design a symmetrized BFS and let &;, 65, ¢, and «,
be the specification parameters, so that the gain function G(z), which is
the squared of the gain function of the corresponding BFS, should verify
1-6 < G(z) <lforz €[0,z, and 0 < G(z) < & for = € [z,,7]. Since
sin?(z/2) = tan%(z/2)/(1 + tan®(z/2)), we can obtain d and z. by solving
the equations

] tan®(z,/2) 1 + tan?(z./2) 4 1
(1+ta,n2(:1:?,/2)>< tan2(z./2) ) 14

tan?(z,/2) 1 + tan?(z./2)\* _ 1
1+(1+tan2(:cs/2)x tan?(z./2) ) &

First, d is obtained and, if it is not an integer, the nearest integer is chosen.
Then, the value of . is obtained which corresponds to this integer d in the
above equations.

The equations to be solved for the design of a symmetrized BFT are

N (t_(_/‘z*)) _ 1

tan(z./2) 1-6&
tan(z,s/2) 2d _ 1
* (tan(mc/2)) TR

The way to proceed is like for symmetrized BFS.

If we want to design a symmetrized band-pass filter and the specifications
are given by means of the parameters 61, 83, €p1, Tp2, s and z,2, so that
the gain function G(z) should verify 1 — 6, < G(z) < 1 for = € [zp1, 2,9
and 0 < G(z) < é; for £ € [0,25] and = € [z.2,7], we may proceed as
follows. First, let v, = 2,9 — ,1 and 2, = 2,3 — z,,; and design a low—pass
filter with the specifications parameters 61, 8, 2, and ;. Then, apply the
transformation of the previous Section to this low-pass filter to obtain the
band—pass filter.

Note that we have not used z,; in the procedure we have just described
to design a band-pass filter. We have implicitly assumed that z.; is the
syminetrical point of z,2 with respect to (z,1 + 7,2)/2.

13




14




5 The use of Fixed Filters Within a Model—
Based Approach

Suppose a low-pass filter or a band-pass filter of the type we have considered
in the previous Sections, which can be given a signal extraction interpreta-
tion, and that we want to apply this filter to a finite series z = (z1,...,2n)".
Then, we can use any of the three approaches described in this paper to
obtain the filtered series. In particular, if approach B is used, the model
implied by the filter is used to extend the series with backcasis and forecasts
before applying the Wiener-Kolmogorov filter.

If the process {2} follows an ARIMA model ¢(B)a(B)z = 0(B)ay, which
in general will be different from the model implied by the filter, the qu-
estion naturally arises as to whether the use of this model will improve the
performance of the filter at both ends of the series.

Let ¢*(B) = ¢(B)a(B) and let the filter be H(B)H(F'), where H(B) =
v(B)/B(B). Suppose first that we know a complete realization of the process
{z:} and let {z:} be the filtered series z; = H(F)H(B)z and y: =H(B)z:.
Then, y; follows the model ¢*(B)3(B)y: = 8(B)vy(B)a:. Since the series z
also follows the backward model ¢*(F)z = 8(F)v:, projecting onto the finite
sample z = (z1,...,2n), it is obtained that

¢ (B)B(Bly: = 0 t2N+g+atl
¢*(F)zt = 0 ¢ < —-q,
where g is the degree of 6(B) and a is the degree of ¥(B). Then, if p* is the
degree of ¢*(B) and b is the degree of 3(B), the following algorithm can be
used for the cascade implementation of the filter

1. Solve the system

B(Blyy = v(B)n t=—-q+1,...,p°—¢q

¢*(Flyy = 0 t=—q—b+1,...,—q
where ¢ + a backcasts are needed: 2_,_,11,..., .
Fort = p*—q+1,...,N 4+ ¢+ 2a, obtain y; from the recursion S(B)y:
= 4(B)z;, where ¢ + 2a forecasts are needed: Zn41, ..., EN4qt20-
15




2. Solve the system

B(F)z, = v(Flyy t=N+q+a—-b—p"+1,...,N+q+ta
#"(B)f(B)z; = 0 t=N+gt+a+tl,..,N+q+a+bh

Fort=N+¢+a—b—p*,...,1, obtain z; from the recursion F(F')s;
= 7(F)ye.

Note that if S(B) = 1, the filter is a symmetric moving average, which
is factored as y(F')y(B). In this case, it is not necessary to solve the two
systems. All that is needed is to generate first y; from y, = y(B)z: and then
z; from z, = y(F)y;. For that, a backcasts and a forecasts are required.
Thus, the previous algorithm can be considered as a generalization to ARMA
filters of the procedure used by the program X11 ARIMA for finite moving
average filters. See Dagum (1980).

Consider the unobserved ARIMA components model z: = p; + s; + w4,
where p, is the trend, s, is the seasonal and w, is the irregular component, and
suppose that approach B is used to estimate the components. Then, it may
be the case that we are interested in estimating a smoother trend component
p1,: than p,. This could be achieved by setting p1; = H(B)H(F)p; and p,
= p1+ + P2, where H(B)H(F') is an appropriate low-pass filter and p;; =
(1-H(B)H(F))p:. Suppose first that p = (py,...,py) is known (although it
is not observed). Then, we could apply the previous cascade implementation
to obtain the minimum mean squared error estimator of p;, based on p.
The model for the series that we would use would be the model of p;. Now,
since p is not observed, we have to project it onto the observed series z =
(21,...,2n) in order to obtain the estimator p14 of py 4. If P4 is the minimum
mean squared error estimator of p; based on # in z; = p, + s; +wy, then fy; is
obtained by replacing p, in the equations for the cascade implementation with
p:. This algorithm constitutes a simple way to calculate p;; = H(B)H(F)p;.

The previous result suggests a sensible procedure to estimate smooth
trends or business cycles in two steps. In the first step, apply a model-based
procedure to obtain a canonical decomposition z; = p; + s;+w;. Then, apply
a symmetrized BFS, BFT, or band-pass filter of Section 3, to the trend
estimator p; obtained in the first step using the cascade implementation
described in the previous paragraph. The model to use for p; would be
the model for that component given by the canonical decomposition. The
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business cycle, for example, would be the filtered series, where the filter is an
appropiate band—pass filter. This procedure has the advantage that if, for
example, the input series is white noise, the first step of the procedure would
detect it and p; would be zero. So the procedure automatically safeguards the
user against a bad use of the fixed filter. Also, since the components given
by the first step are “canonical”, the fixed filter would extract all existing
power in the frequency band of interest, free of noise because all noise goes
to the irregular. Two examples of this procedure will be given in the next
Section.

6 Applications

Several programs in Fortran have been written by the author to implement
the methodology outlined in the paper. Specifically, these programs include
programs to design symmetrized BFS and BFT and band-pass filters ob-
tained from them, and programs to apply the three approaches. In case of
approach B, there is also a program to implement the procedure of the pre-
vious Section, where a model for the series is known. These programs are
available from the author npon request.

Programs TRAMO and SEATS of Gémez and Maravall (1996), have been
used for automatic model identification (including a test for the logarith-
mic transformation) and model estimation (TRAMO), and signal extraction
(SEATS), based on the canonical decomposition of the reduced form ARIMA
model for the series. These programs are available at the Internet address

http://www.bde.es

To simplify the exposition, the automatic outlier detection and correc-
tion facility of TRAMO has not been used, but this aspect could be easily
incorporated into the proposed procedure.

The first example is the series of quarterly US GNP, from the first quarter
of 1951 until the fourth quarter of 1985. The series can be taken from Citibase
data bank. Using TRAMO, the multiplicative ARIMA model (0,1,1)(0,1,1)4
is specified for the logs of the data and the model parameters are estimated.
The fit is acceptable, although the residuals show some departure from nor-
mality. This is due to the presence of two outliers (transitory changes), at
1984-1 and 1958-1. But, as mentioned above, we do not correct for the effect
of these outliers and the model is accepted. After having passed the model
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Figure 2: (a) Gain Functions of HP filter and SEATS Trend and SAS Filters.
(b) Trends estimated by SEATS and HP filter.

and the parameter estimates to SEATS, signal extraction is performed. Then,
the HP filter, which, as shown previously, is a symmetrized BFS, is applied
to the seasonally adjusted series (SAS). It is shown in Gémez (1997) for this
example that using the three approaches, A, B and C, to estimate the signal
s; in (1) leads to practically the same results.

The gain functions of the HP filter and the trend and SAS filters used
by SEATS are displayed in figure 2(a), whereas, in figure 2(b), one can see
the trend component estimated by SEATS and the smoother trend obtained
by filtering the SAS with the HP filter. The HP filter is a low-pass filter
that approximates rather well an ideal filter that passes all components with
periods greater than thirty two quarters (eight years).

The cycle estimated by the HP filter is the difference between the SAS
and the trend estimated with this filter. This cycle contains however many
components with periods between two and six quarters, which should not
be properly considered as part of a cyclical component. This is due to the
fact that these components are in the seasonally adjusted series and are not
removed by the HP filter. See figure 2(a).

Suppose that, as in Burns and Mitchell (1946}, we define business cycles as
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those cyclical components of no less than six quarters (eighteen months) and
no more than thirty two quarters (eight years) in duration. Then, it would
be interesting to design a band-pass filter corresponding to this defimition,
apply this filter to the trend estimated with SEATS, using the model for
the trend given by the canonical decomposition, and compare the estimated
cycle with the cycle given by the HP filter. To this end, we first design a
band-pass filter, based on a BFT, with the specifications é, = .1, §; = .1,
Zp1 = 06257, z,, = .37 and x,2 = .47, where ,, corresponds to a period
of 32 quarters (8 years) and z,2 to 6.67 quarters (a little more than a year
and a half). The parameters d and z,. for the symmetrized BFT, obtained
by solving the equations of Section 4, are d = 5 and z, = .9073. The gain
functions of the band—pass filter so designed and the trend function given by
SEATS are displayed in figure 3(a). The trend component p; given by the
canonical decomposition in SEATS follows the ARIMA model (0,2,2), with
moving average polynomial 1+10.0877B —0.9123 B2, where B is the backshift
operator. The cycle obtained by applying the band—pass filter to the trend
estimator p; given by SEATS, using the model for the theoretical component
in the manner described in the previous Section, can be seen in figure 3(b).
Also in this figure, we can see the cycle obtained by the HP filter. It is clear
that this last cycle is more volatile than the one obtained with the band—pass
filter.

The second example is the series of monthly airline passengers of Box
and Jenkins (1976), from January 1949 until December 1960. Using TRAMO
again, the multiplicative ARIMA model (0,1,1)(0,1,1),7 is specified for the
logs of the data, the model parameters are estimated, and the fit is acceptable.
The model and the parameter estimates are passed on to SEATS and signal
extraction 1s performed.

Suppose that one is interested in obtaining a smoother trend than the
trend given by SEATS since, by inspecting figure 4(a), which displays the
trend filter used by SEATS, it is easy to see that this last filter is not a
very restrictive low—pass filter. We design, for example, a symmetrized BFS
that approximates an ideal low—pass filter that passes all components with a
period greater than eight years. This can be achieved with the specification é;
=.1, 6, = .01, z, = .027, and z, = .057, since the frequency that corresponds
to a period of 96 months (8 years) is .02083. Solving the equations of Section
4, the parameters d = 4 and . = .0827 are obtained. The gain function of this
symmetrized BFS can be seen in figure 4(a). We now apply the symmetrized
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Figure 3: (a) Gain Functions of band-pass, and SEATS Trend and SAS Fil-
ters. (b) Cycles estimated by band-pass filter and HP filter.

BFS to the trend estimator p; given by SEATS, using the model for the
theoretical component p; in the manner described in the previous Section.
The model that follows p, is (0,2,2), with moving average polynomial 1 +
0.0478 B —0.9522B52, where B is the backshift operator. The trend estimated
using the symmetrized BFS and the trend estimated by SEATS are displayed
in figure 4(b). In order to estimate a cyclical component, using the definition
of the business cycle of Burns and Mitchell (1946), we design a band-pass
filter, based on a symmetrized BFT, with the specifications & = .1, §; = .01,
&py = .027, €2 = 087 and x;5 = .157, where z,; corresponds to a period of
100 months (8.33 years) and @, 2 to 25 months (a little more than two years).
The parameters d and z. for the symmetrized BFT, obtained by solving the
equations of Section 4, are d = 4 and z. = .2475. The gain functions of
the band—pass filter so designed and the trend function given by SEATS are
displayed in figure 5(a). The cycle obtained by applying the band-pass filter
to the trend estimator p; given by SEATS, using the model for the theoretical

component p; in the manner described in the previous Section, is displayed
in figure 5(b).
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Figure 4: (a) Gain Functions of symmetrized BFS and SEATS Trend and
SAS Filters. (b} Trends estimated by SEATS and symmetrized BFS.

APPENDIX A: ALGORITHMICAL DETAILS
Details of Approach A

Among the state space representations of ARIMA models, we select that of
Goémez and Maravall (1994), which is an extension to nonstationary series of the
representation originally proposed by Akaike (1974) for ARMA models.

Letting r = maz{p+d,q, + 1}, ¢*(B) = ¢(B)a(B) and defining ¢! = 0 when
i > p+ d, the state space representation for model (1) is given by

Zy = H,mt + n,; (A.].)
T = Fﬂ:z + th+1, (A.?)
where

0 1 0 0

0 0 1 . O
F= ' E T ' ’ (AB)

0 0 0 e 1

—‘?5: - :—1 —®i_p e “ﬂ

Ty = (3t931+1,h e ,3t+,-_1,1),, H = (1, 0, . .,0),, G = (1, ’lpI, e :_1), and the ’l[):
weights are the coefficients obtained from *(B) = 6,(B)/¢*(B) = S_ic, ¥ B*. The
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Figure 5: (a) Gain Functions of band-pass, and SEATS Trend and SAS Fil-
ters. (b) Cycle estimated by band-pass filter.

elements of the state vector are defined as s, ;: = 8440 — Wgbegs — =+ - — ¥ 1bey1,
1=1,...,7— 1. They are the predictors of s;,; based on the semi-infinite sample
{8]' ] 5 ‘t}

Since the process {s;} follows an ARIMA model, proceeding like in Bell (1984),
it can be generated as linear combinations of some starting values and elements of
the stationary (differenced) process u; = a(B)s;. Let the starting values be § =
(81-d5...,%0)". Then, following Bell (1984), the s; can be generated from s; = A}é
+ Y iz &tty_i, where £ > 0, £(B) = 00,68 and the A, = (Ay,. .., Az) can be
recursively obtained.

Like in G6mez and Maravall (1994), p. 615, it can be shown that the initial
state vector z; verifies 2, = A§ + EU, where 4 = [A;,..., A,]', E is the lower
triangular matrix with rows the vectors (&;_1,&;-s,...,1,0,...,0),7=1,...,r, U
= (ul,ug,l, . u,.,l)’ and u;; = E(u,:]ut 1t < 1), 1> 1.

In the previous expression for z;, § models uncertainty with respect to the
initial conditions and its distribution is unknown. Therefore, the ordinary Kalman
filter cannot be applied and some device has to be used to handle 4, which can be
considered as a vector of nuisance random variables.

For algorithmical purposes, we will use the approach of De Jong (1991) in this
paper. Using the transition equation (A.2), if 2z = (21,...,2x) is the observed
series, we have the following representation
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z:X6+e, (A4)

where, partitioning X = (Xy,...,Xy) and € = (€;,...,ex) conforming to z =
(#1,.-.,2n)", the X{ and ¢ can be recursively obtained, the distribution of € is
known, E(¢) = 0, and Cov(é, €) = 0.

Let Var(b;,n;)’ = ofdiag(1, ), where A = o2 /0, and Var(e) = 07X in (A 4).
Following De Jong (1991), suppose that 6 is independent of the {b;} and {n,}, has
mean 0 and covariance matrix o2C, and take the limit C~! — 0 to make it diffuse.
Assuming normality in n,, b, and é and letting I(2) be the log-likelihood of z in
(A.4) it is shown in De Jong (1991) that, apart from a constant, as C~* — 0,

i(2) + %ln loiC| — - %{(N —d)ln(e)) + In|Z|+1n | X' X
+ (z— X6YZ=Y(z— Xb)/02}, (A.5)

where § = (X’S~1X)"1X’'S-1z and the mean squared error (Mse) of § is Mse(8)
= o(X'S~1X)~L. The limit expression in (A.5) is the diffuse log-likelihood. The
parameter of can be concentrated out of the diffuse log-likelihood by replacing o3
in (A.5) with its maximum likelihood estimator &7 = (2~ X 8)E~1(2—X8)/(N —d).

Thus, making § diffuse implies that (A.4) can be considered as a generalized
linear regression model (GLS), where 6 is the vector of regression parameters and
6 and &7 are the GLS estimators.

In order to evaluate the diffuse log-likelihood efficiently, let ¥ = LI', with L
lower triangular, be the Cholesky decomposition of ¥ = Var(e)/o? and suppose
that an efficient algorithm exists to compute L'z, L7X and |L|. This algo-
rithm is a slight modification of the DK¥, which will be described later. Then,
premultiplying (A.4) by L', it is obtained that

L72=L"'X6+ L, (A.6)

where Var(L~l€) = o7Iy. Therefore, model (A.6) is an ordinary linear regression
model. The GLS estimators § and &7 can now be efficiently and accurately obtained
using the QR algorithm, as suggested by Kohn and Ansley (1985). This last
algorithm premultiplies both L'z and L~'X by an orthogonal matrix @ to obtain
v=@QL 'zand (U',0) = QL~'X, where U is a nonsingular d x d upper triangular
matrix. Then, § = U~lv; and &7 = vjv,/(N — d), where v = (v}, v,), v, has
dimension d and v, has dimension N —d. |X'E~1X| in (A.5) can be calculated as
| X'E2-1X|=|U'D|.




If § = 0 and 67 = 1in (A.4), we can apply the ordinary Kalman filter, given
by the recursions

e = Zt— Hléth_l, Ut2|t—1 = H'E,H_lﬂ + O'Z
K, = thlt—IH/Uﬁ:-u f?"t+1|t = F-'i"!]t—l + K¢,
Diprp = (F—KH)Zyp F' + GG,

where the initial conditions are &;;p = 0 and X,y = EVar(U')Z’ and the covariance
matrix Var(U') can be efficiently computed like in Jones (1980). The sequence
ei/oy—1, t = 1,..., N is an orthogonal sequence with mean zero and covariance
matrix equal to the identity matrix. This implies that this sequence coincides
with L'z in (A.6). Therefore, the Kalman filter can be seen as an algorithm that,
applied to any vector » of data, yields L~!v. If § is not zero in the GLS model
(A.4), we can apply the Kalman filter to the data z and the columns of the X
matriX to obtain L7z and L7*X. The DKF is an algorithm that computes these
quantities automatically. In this algorithm, the recursions for e; and &y, in the
Kalman filter are augmented to matrix recursions

(8:, E\',) = (Zt, 0) - H'(jm-h X:h-l),
(Z41)es X!+l|t) = F(im—l,xm—l) + K.(e, Ey),

where the additional columns correspond to new states for the columns of the
X matrix. The other recursions in the Kalman filter remain the same and the
initialization is (iuo,Xuo) = (0,—A) and X0 as before. It can be shown, using
the results in De Jong (1991), that stacking the vectors (e, E;) one on top of the
other for ¢ = 1,..., N, the matrix (L~'z, L='X) is generated.

The DKF also has the recursion Quy1 = Q¢ + (&, E+) (&1, E:)/ 07, _ ), initialized
with @, = 0. This recursion accumulates the partial squares and cross products in
such a way that from @y, the GLS estimators § and &2 can computed. We pro-
pose a Kalman filter algorithm which is the DKF without the recursion for ), and
which applies instead the QR algorithm to (L~1z,L7'X), in the manner descri-
bed above. We think that this procedure is numerically more stable than solving
the normal equations to obtain the GLS estimators and is not computationally
expensive.

Diffuse smoothing refers to the process of obtaining the estimator &; of the
state z, based on the entire data vector z = (z1,...,2x5)’. The estimator &, can
be obtained by means of an augmented version of any of the existing algorithms
for smoothing. We will use an augmented fixed point smoother, which for w,,
1< 8 < N, is the set of recursions

K= z?{t—lﬂ/otzlt—li e = thul(F - K.H'Y
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(ﬂ?:sp, Xs[t) = (ﬁslt—thh—l) + Kga(eh Et)
zslt = Bs[t—l - 2?}:-1H(K?)’a

initialized with X%, _; = Z,j,_1, where 03,_;, Ky, (&1, Et), (#5)s-1, Xyj,-1) and I,
are produced by the proposed Kalman filter algorithm. It can be shown that the
estimator &, and its Mse are obtained from

&, = &,y — X,nb, Mse(2,) = ;5. n + XwMse(8)X] y.

Details of Approach B

It is not difficult to verify that the Wiener—Kolmogorov formula corresponding
to the signal s, in (1) is given by

. 0(B)(F)o}
T RBAE) + ¢ B Pt

Since the denominator in (A.7) is also 6(B)8(F)o2, defining k* = o/o2 and
7(B) = k6,(B)/6(B), expression (A.7) can be written more compactly as § =
T(B)r(F)z,.

The procedure used by Burman (1980) for signal extraction transforms the
filter #(B)n(F) into a sum of the form m(B)r(F) = G(B) + G(F). This is the
so—called parallel implementation of the filter. If the filter is applied to the series
as a product of the two factors v(B) and x(F), this is called a cascade implemen-
tation. The cascade implementation is simpler than the parallel one since it is not
necessary to partition the two—sided filter into two one-sided filters.

The algorithm for the cascade implementation can be obtained as follows. Let
y; = 7m(B)z,. Then, using the ArIMA model for z, and the definition of 7(B), it is
easy to verify that y; follows the model ¢*(B)y: = k8,(B)a:, where the g, are the
innovations of z;. This, together with the fact that the series z, also follows the
backward model ¢*(F)z; = 8( F)v,, implies, after projecting onto the finite sample
z=(#,....,2n), ¢*(B)y: = 0,1 > N + ¢, + 1, and ¢*(F)z, = 0,1 < —q, where ¢
= maz{q,,p+ d} is the degree of (B). Let p* be the degree of ¢*(B). Then, the
algorithm is

(A.7)

1. Solve the system

8(B)yy, = kO,(B)z t=-q+1,....p"~¢
"(F)yy = 0 t=-29+1,...,—¢
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where ¢ + ¢, backcasts are needed: Z_,_,, 4+1,...,%.
Fort = p* — g+ 1,...,N + 2q,, obtain g, from the recursion 6(B)y, =
k8,(B)z, where 2g, forecasts are needed: Znyy1,...,2N+2g,+

2. Solve the system

O(F)é = kO, (F)yy. t=N+g,—-p +1,...,N+g,
¢*(B)é; 0 t=N+¢+1,....N+¢, +¢

Fort= N +g¢, —p",...,1, obtain § from the recursion 8(F)3; = k0,(F)y,.

In order to obtain the forecasts and backcasts needed in step 1 of the previ-
ous algorithm, instead of using (A.1) and (A.2), it is easier to use a state space
representation based on the reduced form ArRIMA model ¢*(B)z: = 6(B)a:. The
ordinary Kalman filter, initialized at ¢ = d + 1, can be used like in Gémez and
Maravall (1994) to compute the forecasts. Reversing the series and using the same
procedure, the backcasts can also be obtained.

Details of Approach C

Suppose the observed series 2 = (21,...,2x5) and let s = (s4,...,8y). Without
loss of generality, assume o = 1 and let A = o2/ = o2. Let further u, =

a(B)s:, w = (Uay1,...,unx) and Var(u) = Q. Then, the problem is minimize
T (2 — 8) 4+ Aw'Q~1u. Define the (N — d) x N matrix

oy P (a7 ]_ 0 - O
0 o - o ]_ - 0

D=|. :d : :1 oL (A.8)
0 o o o0 0 ..-1

and let Q = LI', with L lower triangular, be the Cholesky decomposition of
Q. Then, the problem can be expressed more compactly as minimize n'n +
AL 1DsYL'Ds, where n = z — 8. Using standard matrix differentiation results,
the solution can be easily seen to be

b= [T+ ML DYL*D]'z = [[I,\/X(L-lp)'] [ ﬁ;_lD”—l 5 (A9)

In order to solve (A.9) efficiently, we can proceed as follows. Apply first the QR
algorithm to the matrix [, v/A(Z~'DY]’ to obtain an orthogonal (2N —d) x (2N —d)
matrix @ such that Q'[I,vA(L~'D)] = [R',0'}, with R an upper triangular N x N
matrix. Then, solve B’ R3; = z.

26




The matrix LD can be computed bypassing the inversion of @ or L by
applying the Kalman filter corresponding to the model u; = 8,4, to the columns of
the matrix D. That is, after setting the state space representation corresponding
to that model, the same Kalman filter is applied N times, using at iteration % the
t-th column of D as data.

APPENDIX B: PROOFS

Proof of Theorem 2. It is not difficult to verify that 4sin?(2/2) = (1 —e~%*)(1—
¢'®). Taking this expression into (5) and using the definition of A, it is obtained

that
1

T 1+ M1 —emim)(1 —ei)d”
Replacing e~%* with the backshift operator B in this expression implies that the
filter is asserted.

In order to obtain the moving average polynomial 6(B) and o2 of the reduced
form ARIMA, define y = sin®(z/2). Then, |G()|? in (5) can be written as |G(z)?
= C4/(C? + y?) and the denominator in this expression can be factored as (y —
%)+ (y — ya), where y; can be expressed in polar form as y; = Ciryajn)j2s § =
0,...,d — 1. If y; is not real, then its conjugate 7; is also a root. Replacing
e~ with B or, equivalently, y with (1 — B)(1 — F)/4, n (y — y;)(y — %), an
expression is obtained which can be factored as «;(B)x,;(F)/16, where 7;(B) =
ag; + o1 ;B + a,;B*. When d is even, all roots y; are imaginary and, if d is
odd, there are d — 1 imaginary roots and one single real root 3, = —C. For this
last root, y + C can be factored as mp(B)7y(F)/4, where m,(B) = ag ) + a1 B.
Therefore, the filter can be factored as 22%sin(z./2)2/ [1i, (7;(B)m;(F)), where k
is the integer part of (d+1)/2. The expression for the ¢; ;, ¢ = 0, 1,2, corresponding
to (y — v;)(y — 3;), are obtained from the equalities

1G(2)[*

ag;og; =1, Qg ;0 j0g ; = —4 + 8Ccos((m + 2(j — 1)7)/d)
of ;i + 0 ; + a3 ; =6 —16Ccos((7 + 2(j — 1)7)/d) + 16C>.

The expression for the «; ;, 7 = 0, 1, corresponding to y + C when d is odd, can be
obtained analogously. a

Proof of Theorem 3. The proof is analogous to that of theorem 2, using the
easily verifiable formula tan?(2/2) = (1 —e™*)(1— €*)/[(1+ e~*)(1+€*)]. 0O
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