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Abstract

In this document, we propose 1) a method for automatic ARIMA model iden-
tification, based on estimating first the unit roots and then applying the BIG
criterium to specify an ARMA model for the stationary (differenced) series, and
2) an automatic procedure to handle four types of outliers. This last procedure
automatically identifies the location and type of outliers and corrects the series for
their effects. The outliers are obtained one by one, each time estimating jointly all
model parameters and outlier effects so far detected. Possible masking effects are
eliminated by performing multiple regressions. Only linear regression techniques
can be used for both automatic model identification and automatic outlier treat-
ment, thereby reducing considerably the computation time needed to perform all
the calculations. In this way, the practical value of the proposed procedures is
greatly increased. The two procedures can be combined so that they can easily
and objectively handle the most difficult cases of time series modeling in the pre-
sence of outliers. Extensions of the basic procedures to the case when there are
missing observations, and tests for the log-level specification and for the presence
of Trading Day and Easter effects, are also proposed.





Contents

1 Introduction 1

2 Automatic Model Identification 7
2.1 Procedure to Obtain the Differencing Polynomial 8(B) and to

Specify a Mean for the Model, if Necessary 10
2.2 Procedure to Obtain the ARMA(p, q) Model for the Differenced

Series, Possibly After Having Corrected for Outliers and Other
Regression Effects 13
2.2.1 Computation of BlCptg 14
2.2.2 Optimization of BICM 16

3 Automatic Detection and Correction of Outliers 19
3.1 Estimation and Adjustment for the Effect of an Outlier . . . . 21
3.2 The Case of Multiple Outliers 23
3.3 Estimation of the Standard Deviation a of the Residuals . . . 24
3.4 Description of the Proposed Procedure 24

4 Preliminary Tests and the Missing Observations Case 27
4.1 Missing Observations 27
4.2 Tests for the Log-Level Specification 27
4.3 Trading Day and Easter Effects 28

5 Computational Aspects 29

6 Examples and Conclusions 31

Appendix A 35

References 39

in



AI



1 Introduction

Many of the time series found in industry, economics, social sciences and
many other scientific fields can be represented, at least as a first approxima-
tion, by means of a stationary linear process, possibly after having applied
to the data some suitable transformation and differencing. In this document,
the term stationary means wide sense stationary, not strict stationary. See
Brockwell and Davis (1992), pp. 11-14. Other synonyms for wide sense sta-
tionary are second order stationary and weakly stationary. It follows from
the theorem of Stone-Weierstrass of functional analysis that every stationary
process without deterministic components can be approximated by an ARMA
process with any degree of accuracy. ARMA processes are processes which in
the time domain can be represented by means of a linear stochastic difference
equation, and in the frequency domain have rational spectral densities. See
Brockwell and Davis (1992), pp. 130-133 and 187-190.

ARIMA models are nonstationary models such that after some degree of
differencing they become stationary ARMA models. The I in the acronym
stands for "integrated", because integration is the inverse operation of diffe-
rencing. It turns out that ARIMA models can be successfully used in practice
to represent many time series, specially in economics.

ARIMA models became very popular after the publication of the seminal
book by Box and Jenkins (1976), whose first edition was published in 1970.
In this book, a systematic procedure was for the first time proposed to handle
the problem of time series modeling by means of iterative cycles consisting
of

i) Model identification

ii) Model estimation

iii) Diagnostic checking

At the same time, in Box and Jenkins' book of 1976 some computer
programs were given to implement this methodology with the aid of digital
computers. In this way, given the big computing power of computers, the
user was for the first time able to apply a new and powerful machinery which
would prove very useful in the field of time series analysis. The arrival of



personal computers contributed further to increase enormously the demand
for these new tools.

However, the modeling procedure proposed by Box and Jenkins (1976)
was by no means a process that could be fully automated with the help of
computers. In particular, step i) of the procedure, which involves model iden-
tification, was rather an art which required an expert in time series analysis
to carry it out. It was certainly the most difficult of the three steps.

We will describe later the most common tools used nowadays for ARIMA
model identification but, in spite of the advances that have taken place in the
last two decades, we can say that step i) continues to be the most difficult of
the three steps. Besides, we have to be aware of the fact that the majority of
time series encountered in practice usually have outliers, which makes even
more difficult the modeling procedure.

We will also review later the most important methods for automatic de-
tection and correction of outliers that are currently in use. As far as ARIMA
model identification is concerned, the presence of outliers can make it very
difficult due to the important biases induced by the outliers in the parame-
ter estimates and in the sample autocorrelation and partial autocorrelation
functions. For this reason, any good strategy for ARIMA model identification
has to account for the presence of outliers.

There are many reasons to try to automate as much as possible the ARIMA
model identification stage, but they can be basically reduced to two. The
first one is that one should eliminate as much as possible all mundane and
mechanical chores, which can be performed by the computer, thus increasing
the analyst's productivity. If the user is an accomplished analyst, he may
invest more of his precious time on troublesome data sets that he has to
model. On the contrary, if he is not an expert in time series models, he can
use a powerful methodology that he couldn't even dream of using before.
The second reason has to do with the objectivity of the identification stage,
since it is desirable that this stage be not subject to heuristic methods and
ad-hoc procedures that vary with each time series expert. For example, if a
National Statitical Office has to produce some statistical data which require
the modeling of some time series datasets and an expert is involved in the
production process who uses subjective techniques, it may be criticized for
publishing data which are neither objective nor reproducible.

In this document, a method is proposed for automatic model identification
of ARIMA models in the presence of outliers which tries to automate as much



as possible the identification stage for ARIMA models.
Before describing the proposed methodology, we will start by considering

the procedure proposed by Tsay (1986) for identification of an ARIMA model
in the presence of outliers. This procedure consists of the following steps

1) Identification. A tentative ARMA(p, q) model is identified using the
method of Tsay and Tiao (1984), which is based on the extended sam-
ple autocorrelation function (ESAF). The method produces consistent
estimates of the AR part, which may include unit roots. That is, the
autoregressive polynomial includes the differencing polynomial, which,
typically contains regular and/or seasonal differences.

2) Estimation of the MA part. The data are first filtered using the au-
toregressive polynomial and the AR estimates given by step 1. Then,
Durbin's method with bias correction is applied to the filtered data to
obtain the MA estimates. See Tsay (1986).

3) Outlier detection. Using the AR estimates of step 1 and the MA esti-
mates of step 2 as if they were the true model parameters, a search
for an outlier is performed, given the critical value C chosen by the
user. If there is no outlier, go to step 4. If, on the contrary, there is
one, correct the series for the outlier effect and go to step 1 with the
corrected series instead of the original series. The statistics and the
tests used for outlier detection are those proposed by Chang and Tiao
(1983).

4) Summary and model checking. The tentatively identified model is that
given by the last iteration of step 1. The number of outliers is deter-
mined by the number of iterations. It is not recommended to specify
more than one outlier per iteration due to possible masking effects. The
analyst should investigate the possible causes of the identified outliers
to see whether the model should be modified in consequence.

This procedure presents some very interesting and positive aspects. To
the best of this author's knowledge, it is the only procedure that deals with
the identification of ARIMA models in the presence of outliers in a systema-
tic way and proposes an effective computational method. Since it is based
on linear regression techniques only, it is possible to reduce considerably the



computational burden so that even a personal computer can be used to im-
plement the procedure. This is very important, because it is well known that
computing time is one of the great problems in outlier treatment in time
series.

However, the specification of an ARIMA model in each step of the proce-
dure seems to be excessive. Once the series has been corrected for the most
important outliers, it is possible to specify a model for the series which will
not probably change in subsequent steps. Also, and this could be a serious
deficiency, the use of the ESAF to identify ARIMA models presents some
problems. It seems that it is not a very adequate tool, especially for seasonal
models, and, in any case, to obtain the unit roots in the autoregressive part.

Another aspect that can be improved is that of the detection and correc-
tion of outliers. The detection of spurious outliers due to masking effects can
be avoided by using multiple regressions. Other important improvements can
be obtained by using a robust estimator of the residual standard deviation,
computing the residuals by means of the Kalnian filter and using an "exact"
filter to estimate the parameters in the multiple regressions.

Extensions of the basic procedure, like performing some preliminary tests
for the log-level specification and Trading Day and Easter effects, can also
be incorporated.

Taking into account the procedure proposed by Tsay (1986) and the previ-
ous considerations on how it could be improved, we propose in this document
an algorithmical procedure which, briefly described, is the following.

a) Preliminary tests. If desired by the user, the procedure can test for the
log-level specification, Trading Day and Easter effects. These last two
tests are performed using the default model (airline model).

b) Initialization. If the user wants the series to be corrected for outliers,
accept the model specified by the user (the default model is the airline
model) and go to step 3. Otherwise, go to step 1. The critical value C
for outlier detection can be either entered by the user or specified by
the procedure. In this last case, the value of C is chosen depending on
the length of the series.

c) Step 1. If the user has specified the differencing orders and whether
there should be a mean in the model, go to step 2. Otherwise, the
series is first corrected for all regression effects, if any. Then, using



the corrected series, the differencing orders for the ARIMA model are
automatically obtained and, also automatically, it is decided whether
to specify a mean for the series or not. Go to step 2.

e) Step 2. Perform automatic identification of an ARMA(J?, q) model for
the differenced series, corrected for all outliers and other regression
effects, if any. If the user wants to test for Trading Day and Easter
effects and any of these effects was specified in the preliminary tests,
check whether the specified effects are significant for the new model. If
the user wants to correct the series for outliers, go to step 3. Otherwise,
stop.

d) Step 3. Assuming the model known, perform automatic detection and
correction of outliers using C as critical value. If a stop condition is
not satisfied, perhaps decrease the critical value C and go to step 1.

In this document, the preliminary tests and steps 1, 2 and 3 of the pro-
posed procedure will be described in detail. The procedure will be extended
later to cover the case of missing observations.

The previous algorithm doesn't use the method proposed by Tsay and
Tiao (1984), which is based on the (ESAF), to specify an ARIMA model.
Instead, it estimates first the unit roots in the initialization step and then,
in step 2, it uses the BIG criterium, see Akaike (1978, 1979), to specify an
ARMA model for the differenced series. This is due to two reasons. First,
as mentioned above, the ESAF method of Tsay and Tiao (1984) apparently
does not get very satisfactory results when it is used to obtain the differencing
orders. Second, as reported by Liu (1989), the method is very informative as
regards the identification of ARIMA models for time series with no seasonality,
but for seasonal time series it is less successful. The estimation of both
unit roots and the parameters of the ARMA models for which the BIG is
computed is performed by means of the method of Hannan and Rissanen
(1982), henceforth referred to as HR, although the exact maximum likelihood
method can also be applied.

The proposed procedure uses a method for outlier treatment which incor-
porates substantial improvements with respect to the method proposed by
Tsay (1986). Among them, we can mention

1) It allows for four types of outliers.



2) It uses the MAD estimator to estimate robustly the residual standard
deviation.

3) It performs multiple regressions in order to eliminate possible masking
effects.

4) Exact residuals are computed by means of a fast Kalman filter routine
which is based on the algorithm of Morf, Sidhu and Kailath (1974).

5) It uses a method to incorporate or reject outliers which is similar to
the stepwise regression procedure for selecting the "best" regression
equation.

6) To estimate the parameters in the multiple regressions, it uses the algo-
rithm of 4), applied to the data and to the columns of the design matrix,
together with the QR algorithm. This last algorithm is described in,
for example, Gill, Murray and Wright (1992), pp. 37-40.

7) It uses the HR method to estimate the parameters of ARMA models.
This method produces estimators which have similar properties than
those obtained using maximum likelihood estimation, but is much less
computationally expensive.

Finally, the proposed procedure can be used with regression models with
ARIMA errors, as opposed to the procedure proposed by Tsay (1986).

As mentioned above, the differencing orders are obtained in the propo-
sed procedure by estimating the unit roots. This is done in step 1 by first
estimating autoregressive models of the form

(1 + faB + faB2)(l + 3>Bs)(z(t) -n) = a(i), (1)

where { z ( t ) } is the observed series, s is the number of observations per year,
H in the mean of the process, B is the backshift operator, Bz(i] — z(t — 1),
and {a(t}} is a sequence of i.i.d. ./V(0, <r2) random variables. Then, the series
is differenced using the differencing orders given by the unit roots obtained
after estimating (1) and an ARMA(1, l)x(l, l)s model with mean, that is, a
model of the form

(1 + +B)(1 + $Bs)(x(t) - f i ) = (l+ 9B)(1 + QBs}a(t), (2)



is fitted to the differenced series {x(t)}. If any new unit roots appear after
estimating (2), the differencing orders are properly increased and a new model
(2) is fitted. The process is continued until no more unit roots are found.
Then, the residuals of the last estimated model are used to decide whether
to specify a mean for the model or not. The choice of models (1) and (2) will
be justified later.

The proposed procedure has two well delimited parts. The first one con-
sists of the automatic model identification. In this part, the differencing
polynomial and an ARMA(p, q) model for the differenced series are obtained.
The second one implements the algorithm for automatic detection and cor-
rection of outliers. The four types of outliers considered will be described
later. Both parts can be sequentially combined to handle the automatic mo-
del identification of time series in the presence of outliers. The document
is structured as follows. In Section 2, the automatic model identification
procedure is described. Section 3 deals with the algorithm for outlier detec-
tion and correction. Some computational aspects of the proposed procedure
are described in Section 4. Also in this Section, a Fortran program written
by the author to implement the proposed procedure is described. Finally,
in Section 5, the proposed procedure is applied to some real and simulated
series and the conclusions are summarized.

2 Automatic Model Identification

Traditionally, in order to identify an ARIMA model for a time series, a time
series expert is needed who, with the help of some statistical software for
time series modeling like, for example, SCA, examines the graphs of the ori-
ginal series, some differences of the series, the sample autocorrelation and
partial autocorrelation functions, and the ESAF. These tools help the ex-
pert determine first the differencing degree and then an ARMA model for
the differenced series, which should be chosen according to the principle of
parsimony.

The process of determining the differencing orders can sometimes be very
difficult, and the selection is always made with some subjectivity. In addi-
tion, for stationary models, the theoretical autocorrelation and partial auto-
correlation functions present a clear pattern only for pure moving average or
pure autoregressive models, whereas, as already mentioned, it seems that the
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ESAF can be used with some guarantee of success only with non seasonal
models. If to the previous considerations we further add that the functi-
ons used in practice are all sample functions, which may differ substantially
from the theoretical ones, and that there may be outliers in the series which
distort even more the patterns of the theoretical functions, we conclude that
the identification stage is possibly the most difficult of the three stages of
time series modeling.

As an alternative to the traditional methods, we can consider the penalty
methods, which use criteria based on information theory, such as AIC or
BIG. However, these methods can only be used with ARMA models, which
are stationary. Therefore, the problem remains of obtaining the necessary
differencing orders to render a time series stationary. The penalty methods,
and in particular AIC, have been criticized for their tendency to overpara-
metrize. Other methods, like the corner method or the minimal canonical
correlation method (SCAN) don't seem to be very useful. A good reference
to review all identification methods for ARMA models is the book by Choi
(1992).

Recently, the SCA software package has incorporated a module for auto-
matic ARIMA model identification, called "SCA-Expert". This module uses
a procedure based on the filtering method proposed by Liu (1989) and certain
heuristic rules. Briefly, this method consists of the following.

1. Examine first the sample autocorrelation functions, henceforth referred
to as SAF, of *(i), (1 - B)z(t), (1 - Bs}z(t) and (1 - B)(l - Bs)z(t] to
assert the differencing orders and to see whether seasonality is present.
After that, examine the SAF of the properly differenced series. If an
obvious seasonal ARIMA model can be specified from the SAF, stop.
Otherwise, go to the following step. Denote by y(i) the differenced
series.

2. If an obvious tentative model cannot be deduced from the SAF of ?/(i),
estimate an intermediate model of the type ARMA(1,1) x (l,l)s. If
no one of the autoregressive parameters has is close to 1, generate the
series R(t) and S(t), which are the result of filtering y(i] with the
ARMA(!,I)S and ARMA(!,I) models that make up the intermediate
model.

If any of the autoregressive parameters is close to 1, then difference



properly. After differencing, a new intermediate model of the same
type is estimated and new R(t) and S(t] series are generated.

3. Use the sample autocorrelation and partial autocorrelation functions,
as well as the ESAF, of R(t) to identify an ARMA model adequate for
the R(t) series.

4. In order to identify a model for S(t), the SAF of S(t) can be used. If a
model is not clear for S(t), examine also the estimated parameters for
the seasonal part in the intermediate model and use them to specify a
model for S(t).

This procedure can be criticized for using heuristic rules that are not
documented.

ARIMA modeling has proved useful in many scientific fields and the reason
because it is not used more often in practice lies in the barrier imposed by
the need of a time series expert to model the time series data and the time
consumed by the modeling process. As mentioned in Section 1, it is very
important in practice to have an automatic time series modeling procedure.

The procedure proposed in this document for automatic model identifi-
cation consists of two parts.

1. Identification of the differencing degrees for the series and specification
of the mean if necessary.

2. Identification of an ARMA(p, q) for the differenced series, possibly cor-
rected for outliers and other regression effects, by means of the BIG
criterium, using a modification of HR's method.

Let the observed series {z(i)} follow the ARIMA(p, d, q) model

<(>(B)6(B)(z(t) -p) = 0(B)a(t),

where <f>(B] = I + faB + ... + <f>pBi>, 8(B] = I + SiB + ... + 8dB
d and

0(B) = 1 + OiB + ... + OgB
g are polynomials in the backshift operator B of

degrees />, d and q, {a(t)} is a i.i.d. 7V(0,a2) sequence of random variables
and ¿i is the mean of the process. The roots of S(B) are assumed to lie on and
those of <f>(B) outside the unit circle, so that the process w(t) — 8(B}z(t)



follows a stationary ARMA(p, q) process. Most economic series follow so-
called multiplicative seasonal models, where

6(B) = VQV»,
¿(B) = ¿r(5)¿s(J3'), (3)

0(B) = Or(B)6s(B
s),

s is the number of observations per year, Va = (1 — B)a and V* = (1 — Bs)b.
In practice, for economic time series, the inequalities 0 < a < 2 and 0 < 6 < 1
hold. For simplicity, we will use in the rest of the Section the notation (2),
even for multiplicative seasonal models. We will make specific reference to
these models when necessary.

2.1 Procedure to Obtain the Differencing Polynomial
<5(B) and to Specify a Mean for the Model, if Ne-
cessary

Suppose that the series |X¿)} follows model (2), where it is assumed \i = 0 to
simplify matters. Then, by theorems 3.2 and 4.1 of Tiao and Tsay (1983), the
ordinary least squares, henceforth OLS, estimators obtained from an AR(&)
regression, where k > d, asymptotically verify

9k(B) = 8(B)}n(B),

where = denotes asymptotic equivalence in probability, m = k—d and $¿(J5),
S(B) and <j>m(B) are, respectively, the polynomials estimated by OLS in the
autoregressions

*k(B)z(i) = a(t),

¿(B)z(t) = o(i),

<t>m(B}w(i) = a(t),

where w(t] = 8(B)z(t] is a stationary process that follows the ARMA(p, q)
model (j)(B)w(t) = 9(B}a(t] and the subindex in $k(B] and (f>m(B) denotes
the polynomial degree. In addition, the equality 6(B) = 8(B] + Op(N~l)
holds, where N is the series length.

The practical implication of this result is that if we perform an auto-
regression of order greater than or equal to the (unknown) degree of the
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polynomial £(#), we obtain a consistent estimate of S(B) as a component of
$k(B). If we specify a model of the form AR(2)x(l)s for <&&(.#), we cover
the cases S(B) = 1, S(B) = V, 8(B] = V,, S(B) = VVS and 8(B) = V2VS,
which are the ones of most applied interest.

In the case of non seasonal models, where 8(B) = Va and 0 < a < 2 is
assumed, if we specify an AR(2) model, all important cases are covered.

Based on the previous considerations, the proposed algorithm to identify
the differencing polynomial is the following.

I) Specify a model of the form AR(2)x(l)s with mean, given by equa-
tion (1) if the process is multiplicative seasonal, or an AR(2) model
with mean , also given by (1) but without the second factor, if the
process is regular. This autoregressive process is estimated using HR's
method, which will be described later, unless the user decides to use
exact maximum likelihood. If the roots estimated with HR's method
lie outside the unit circle, the autoregression is estimated again using
unconditional least squares. A root is considered to be a unit root if
its modulus is greater than a specified value, which by default is .97.
Go to II).

II) In addition to the differencing degrees identified in I) as a result of the
estimated unit roots, a model of the form ARMA(!,!)X (!,!)« with
mean for seasonal series, or a model ARMA(!, 1) with mean for non
seasonal series, is specified. Letting x(t) be the series that results from
differencing z(i) with the differencing polynomial obtained after the
estimation of the initial autoregression, the equations for these models
are given by (2) in the seasonal case, and by (2) without the factors
involving Bs in the regular case. The model is estimated using HR's
method or exact maximum likelihood, depending on the option chosen
by the user, and if any of the estimated autoregressive parameters is
close to 1, the degree of differencing is increased accordingly. A pa-
rameter is considered to be close to 1 if its modulus is greater than a
specified value, which by default is .88. To avoid cancelation of terms
in the model, the absolute value of the difference between each auto-
regressive parameter and its corresponding moving average parameter
should be greater than .15. For multiplicative seasonal models, it is not
possible to pass from 0 differencing to VVS directly. If this happens,
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the roots of the autoregressive polynomial obtained in I) are conside-
red again, the one with greatest modulus is chosen, and the series is
differenced accordingly. If the series has been differenced in this step,
repeat II). Otherwise, go to III).

Ill) Using the residuals of the last estimated model, it is decided whether
to specify a mean for the model of the series or not depending on the
significance of the estimated residual mean. Stop.

The ARMA(!, l)x(l,l)s model used in II) is very flexible and constitutes a
generalization of the airline model of Box and Jenkins (1976). For stationary
series, it approximates well many of the ARMA models encountered in prac-
tice. When it is used with nonstationary series, it can detect autoregressive
unit roots which have not been detected by the autoregressive model used I).
Imagine, for example, a model of the form (1 — B)(z(t) — ¡j,} = (1 — .8B)a(t),
where the autoregressive and the moving average part almost cancel out. In
this case, an ARMA(1,1) model would probably estimate the unit root better
than an AR(2) model.

The proposed procedure also allows for the detection of the presence of
a pair of complex unit roots. This is done by means of first specifying an
AR(2) model to each of the series that result from applying ¿>(J5) = VaV* to
the original series, where (a, 6) = (0,0), (1,0), (0,1) and (1,1), after having
subtracted the estimated mean, and then estimating these autoregressive
models. If there are complex unit roots in any of these models, the pair with
a modulus closer to 1 is chosen and from that moment onwards these roots
are considered fixed and the previous algorithm continues.

If there is a pair of complex unit roots, the corresponding degree two poly-
nomial would be treated as part of the polynomial 8(B), as far as differencing
the series is concerned.

The identification of the differencing polynomial 8(B] constitutes the first
part of the proposed procedure for automatic model identification. Traditio-
nally, S(B) is specified by examining the graphs of the SAF for the different
regular and seasonal differences considered. However, specifying S(B) can
be difficult on some occasions, especially if the series follows a multiplicative
seasonal model. In fact, it is not unusual to find series in published articles
which have been overdifferenced. See, for example, the monthly sales series
of Chatfield and Prothero (1973) in appendix A.
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Consider now the case of a regression model with ARIMA errors. The
question naturally arises as to whether the previous analysis is still valid and
if, in consequence, the procedure just described is also applicable in this case.
In this respect, the results of Tsay (1984), pp. 119-120, allows one to state
that, under very general conditions, it is possible to work with the original
series in order to identify the differencing polynomial.

2.2 Procedure to Obtain the Arma(p, q) Model for the
Differenced Series, Possibly After Having Correc-
ted for Outliers and Other Regression Effects

As mentioned in Section 1, the step 2 of the proposed procedure consists
of the identification of an ARMA(p, q) model for the differenced series, pos-
sibly corrected for outliers and other regression effects. We will start by
considering that there are neither outliers nor other regression effects and we
will extend the results later to the general case. The method used in step
2 of the proposed procedure is based on HR's method, which in turn uses
the BIG criterium and computes the ARMA model estimators by means of
linear regressions. Therefore, these estimators are computationally cheap,
although it can be shown that they have similar properties to those obtained
by maximum likelihood.

Let z = (Xl), • . . ,z(N))' the observed series, which follows model (2),
where we assume ¡¿ = 0 for simplicity. Since 8(B) has been identified in
step 1 of the proposed procedure, we can compute the differenced series
w(i) = 6(B)z(t), t = d+l,...,N, which follows the ARMA(p, q) model

4(B)w(t) = 0(B)a(t), (4)

where </>(B), 0(B) and {a(t)} are like in (2). If the model is multiplicative
seasonal, the decomposition (3) holds. In order to avoid notational problems,
let the differenced series be w = (w(l),..., w(N — d})'. If the orders of the
fitted model (4) are (/>,<?), the BIG statistic is

BICM = log(*;ti) + (p + q) log(N - d)/(N - d), (5)

where oí „ is the maximum likelihood estimator of a1'. The criterium estima-
P.9

tes the orders (p, q) by choosing (p,q) which minimizes (5).
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The method just described to choose the orders, which is based on the
traditional BIG criterium, is computationally expensive because one has to
perform a nonlinear optimization for each (p, q) to compute a^q. For this
reason, Hannan and Rissanen (1982) propose to perform the estimation using
linear regression techniques in three steps, although the third step is used
to compute the estimators of the ARMA model chosen by the BIG criterium
and, therefore, only the first two steps are used to select the orders (p, q).

2.2.1 Computation of BICp>q

The procedure proposed to compute the BIG criterium performs the parame-
ter estimation of each ARMA (j>, q) model for which the BICpig is computed
in two steps and is slightly different from the method originally proposed by
HR. In the first step, which takes place only if there is a moving average part
(q > 0), estimates a(t) of the innovations a(t) in (4) are obtained by fitting
a long autoregressive model to the series. That is, given a big n, the a(i) are
computed using

á(*) = Eí«OX*-j), ¿n(o) = i, < > i ,
3=0

where w(t) = 0 if t < 0 and the <j>n(j)
 are computed using Durbin-Levinson's

algorithm. This last algorithm consists of first estimating the sample auto-
correlations

^ = N~d ? w(*Ma + *)
S—Í.

and then recursively computing the <j>n(j) using the equations

n-l

(/>n(n) = - Y. ín-iOXn-j)/^,!, </>n(j) = <j>n-i(j) + <j>n(n)4>n-i(n-j),
3=0

# = {1 -«(!»)}#_!, ¿!(1) = C(1)/C(0), tf = c(0).

In the proposed procedure, the value of n is chosen to be n = max{[\og2(N —
d)],2max{p, q}}, where (p,q) are the orders of the ARMA model for which
the BIG is being computed and [log2 (TV—<£)] is the integer part of log2 (N—d).
This choice is based on the fact that Hannan and Rissanen (1982), p. 88,
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assume that n is greater than log(JV — ¿), but not greater than \ogb(N — a),
for some b < oo.

In the second step, given the orders (£>,<?), the parameters of model (4)
are obtained by minimizing

N-d

t=m "j=0 j=l
E* {E <W - j) - E 0¿(t - j)}2,) (6)

where ra = max{p -f 1, <? + 1} and </>o = 1.
If there is no moving average part (q = 0), the estimation of the parame-

ters of the ARMA model finishes here. Note that, in this case, the estimates
obtained for the autoregressive part coincide with the ones obtained by OLS.

If there is a moving average part (q > 0), the estimators fa and 0¿, ob-
tained by minimizing (6), are consistent but have a bias and, therefore, they
are not asymptotically efficient. In order to obtain bias-corrected, consistent
and asymptotically efficient estimators, see Zhao-Guo (1985), first form

~a(t} = -Y,Ofa(t-j} + j^faw(t-j}, < > 1 ,
j=i j=o

where a(t) — 0 and w(t] = 0 if t < 0. Then put

?(*) = -EMC*-.;)+ *(<)> í(*) = -E^(*-j) + a(í). *£!»
j=i i=i

where rj(t) = 0 and £(i) = 0 if t < 0. Finally, regress a(i) on — r¡(t — j),
j = 1,... ,p, and £(t — j), j = 1,..., q. The estimated regression coefficients
are added to the estimators fa and 9j to obtain the desired estimators fa
and 8j.

When there are a moving average part (q > 0) and an autoregressive (p >
0), better estimates of the moving average part can be obtained by repeating
the previous procedure with the series filtered with the autoregressive filter.
That is, the series is first filtered with the autorregresive filter $(.£?), which
has been estimated in the two previous steps, to obtain the series x(t] —
<j)(B)w(t). Then, the series x(t), which asymptotically follows the model
x(t) = 9(B}a(t) and, therefore, does not have an autoregressive part, is
subject to the two previous steps.
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Once the parameter estimates of model (4) have been obtained for some
orders (p, <?), the estimator a^tq is needed to compute the BICj,)7 statistic. In
the proposed procedure, the residuals r(t), i = 1,..., n = max{p, q} of the
series w(t) are first computed using a fast Kalman filter routine based on the
algorithm of Morf, Sidhu and Kailath (1974). Then, the rest of the residuals
r(t), t = ra+1,..., N—d are recursively obtained using the difference equation
(4). Finally, the estimator a^q is computed by the formula

-, N-d
A 2 L TT^ Jl(,\ap* = W~] 2^ r W'

-1' " i=l

and the BICP,9 statistic is computed using (5).

2.2.2 Optimization of BICpiq

After having described the algorithm to compute BICp)g for each (p,q)^ we
now describe the algorithm used by the proposed procedure to obtain the
optimal model of the form (4). To this end, suppose the general case, where
the series follows a multiplicative seasonal model given by (3). In practice,
it is assumed that the orders of the ARMA(pr,qr)x(ps,qs)s model that the
series follows verify 0 < pr,<ir 5; 3 and 0 < ps,qs < 2, and the BIG statistic
should be computed for all these combinations. Since the resulting number
of combinations is high, in the proposed procedure the search is performed
sequentially. The algorithm is

I) Specify first an ARMA(3,0) model for the regular part. Then, compute
the BIG statistic for models where the seasonal part verifies 0 < ps, qs <
ms, and choose the minimum. The number ms is chosen by the user,
the default value being 1.

II) Fix the seasonal part to that chosen in I), compute the BIG statistic
for models where the regular part verifies 0 < pr,qr < "Vs an<i choose
the minimum. The number mr is chosen by the user, the default value
being 3.

Ill) Fix the regular part to that chosen in II), compute the BIG statistic
for models where the seasonal part verifies 0 < ps, qs < ms, and choose
the minimum. The number ms is that of I).
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The previous algorithm allows for a substantial reduction in computing
time and, however, the results obtained with it are very satisfactory. Once
the previous algorithm has finished, and in order to avoid the tendency of
BIG to overparametrize, especially in the seasonal part, the smallest five BIG
are first ordered in ascending order. Then, the first one is compared to the
other four and if the difference in absolute value is less than a certain number
and the biggest of the two BIG corresponds to a more parsimonious seasonal
part, this last one is chosen. Among all the BIG that satisfy this condition,
the one that corresponds to the more parsimonious part is chosen, provided
that the seasonal part exists (ps > 0 or qs > 0). The procedure also favours
balanced models (models where the degrees of the autoregressive and the
moving average parts coincide).

In the previous algorithm, if the parameters estimated for an ARMA model
using HR's method are such that the roots of the autoregressive or the moving
average polynomials lie within the unit circle, this fact is considered as an
indication of model inadequacy and the model is rejected.

The tentative model ARM A (3,0) specified in I) of the previous algorithm
seems to be robust and the sequential search of the algorithm has given very
satisfactory results in all performed tests of the proposed procedure, with
real and simulated series.

If there is a mean or other regression effects in model (4), the proposed
procedure obtaines first OLS estimators of the regression parameters. Then,
these effects are subtracted from the differenced series before computing the
parameter estimates of model (4) and also before computing the residuals
r(t) needed in the computation of a^q and the BIG statistic.

The orders (p, q) obtained using the BIG criterium are consistent, see
Hannan and Rissanen (1982), whereas those obtained using Akaike's AIC
are not. However, the proof of the consistency in the BIG case is based on
the existence of a true ARMA model for the differenced series, which has been
doubted by some authors, included Hannan himself. For this reason, some
authors justify the use of the AIC criterium, although it is not consistent, on
the grounds that there is no such a thing as a true model.
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3 Automatic Detection and Correction of Out-
liers

When analysing time series data, it is not unusual to find outlying obser-
vations due to uncontrolled or unexpected interventions, like strikes, major
changes in political or economic policy, the occurrence of a disaster, gross
errors, and so forth. Since ARIMA models, which are frequently used in
time series modeling, are designed to grasp the information of processes with
a homogeneous memory pattern, the presence of outlying observations or
structural changes may influence the efficiency and goodness of fit of these
models. See, for example, Abraham and Box (1979), Chen and Tiao (1990),
Tsay (1986), and Guttman and Tiao (1978).

The traditional approach to handle the problem of outliers, once it is as-
sumed that a proper ARIMA model has been correctly identified for the series,
consists of first identifying the location and the type of outliers and then use
the intervention analysis proposed by Box and Tiao (1975). This procedure
requires that a time series expert first examines the data and then, with the
help of some time series software, analyses the sample autocorrelation and
partial autocorrelation functions of the residuals, graphs of the series and the
residuals, etc. For this reason, it is important to try to find some procedure
which automates as much as possible the process of detection and correction
of outliers. Among the first steps in this direction, we can mention the pro-
cedures of Chang, Tiao and Chen (1988), Hillmer, Bell and Tiao (1983), and
Tsay (1988). These procedures are quite eifective in detecting the locations
and estimating the effects of large isolated outliers. However, the problem is
not solved because

1) The presence of outliers may result in an incorrectly specified model

2) Even if the model is appropiately specified, outliers may still produce
important biases in parameter estimates

3) Some outliers may not be identified due to a masking effect

The method proposed by Tsay (1986), which has been described in Sec-
tion 1 of this document, is an important contribution to solve the problem
of model identification in the presence of outliers. Chen and Liu (1993)
have proposed a method for outlier treatment that tries to solve problems 2)
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and 3). This method works rather satisfactorily, although it presents some
deficiencies. For example, the method uses exact maximum likelihood esti-
mation several times, thus making it computationally expensive. It does not
use exact residuals. The algorithm is too complicated. Multiple regressions
are performed without filtering the data and the columns of the design ma-
trix by an "exact" filter, like the Kalman filter. It uses instead a conditional
filter. Finally, the method uses a sort of backward elimination procedure to
select the "best regression equation", instead of a stepwise procedure which
is more robust.

The method proposed in this document for the detection and correction
of outliers attempts to solve problems 2) and 3) in such a way that the
deficiencies in the procedure of Chen and Liu (1993) are eliminated, as will
be described later. In addition, if it is used in the algorithm proposed in
Section 1, together with the algorithm for automatic model identification of
Section 2, the proposed algorithm constitutes an alternative procedure to
that of Tsay (1986) to solve the problem of automatic model identification
in the presence of outliers that complements and may improve considerably
Tsay's procedure.

Like in Section 2, suppose first that there are no regression effects. We
will extend the results to the general case later. Let the series { z ( t ) } follow
the ARlMA(p, c?, q) model given by (2), where it is understood that if the
model is multiplicative seasonal, (3) holds. We will assume for simplicity
that /j, = 0 and we will use the notation (2), referring to (3) when necessary.
To model the effect of an outlier, consider the model

z*(t) = z ( t ) + w(B)It(T), (7)

where v(B] is a quotient of polynomials in J3, {z(i)} is the outlier free series,
It(T) = 1 if t = T and It(T) = 0 otherwise, is an indicator function to refer
to the time in which the outlier takes place and u represents the magnitude
of the outlier. Proposed procedure considers four types of outliers

10: V(B) = 9(B)/(8(B)<t>(B)),

AO: v(B) = 1,

TC: v(B) = 1/(1 - SB),

LS: v(B) = l/(l-B).
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The acronyms stand for innovational outlier (10), additive outlier (AO),
temporary change (TC) and level shift (LS). The value of 8 is considered fixed
and is made equal to 0.7. For a more detailed discussion on the nature and
motivation for these outliers, see Chen and Tiao (1990), Fox (1972), Hillmer,
Bell and Tiao (1983), and Tsay (1988). These four outliers correspond to
some simple types of outliers. More complicated outliers can be usually
approximated by combinations of these four types.

3.1 Estimation and Adjustment for the Effect of an
Outlier

Suppose that the parameters in model (2) are known, the observed series
is z* = («*(!),. . . ,2r*(JV))', the outlier free series is z = (z(l),...,z(N))'
and put Y = (v(B)Ii(T),..., v(B}IN(T}}'. Then, (7) can be written as the
regression model with ARIMA errors

z* = Yw + z. (8)

To simplify the exposition, we will assume that z in (8) follows an ARMA
model or, what amounts to the same thing, 6(B) — I in (2). If this is not the
case, we would work with the series obtained by differencing z*, z and Y in
(8). Let Var(z) = (J2fi and fi = LL', with L lower triangular, the Cholesky
decomposition of Í). Premultiplying (8) by L~l, the following ordinary least
squares model is obtained

L-1z* = L~lYw + L-1z. (9)

Letting T — L~lz, the equality Var(r) = a2IN holds and vector r is the
residual vector of the series (not observed). If we let the estimated residuals
be r* = L~lz* and write X = L~1Y, (9) can be written as

r* =Xw + r. (10)

If y is 0 in (8), the model would be z* — z and if we applied the Kalman
filter to this model, we would obtain L~*z*. This result, which a standard
result of control theory, allows us to see the Kalman filter as an algorithm
that, applied to any vector v instead of z*, yields L~lv. Therefore, if we
apply the Kalman filter to the vector of observations z* and to the vector Y",
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we can move from (8) to (9) or, what amounts to the same thing, from (8)
to (10).

We can estimate u by OLS in (10 to obtain

u; = (X'XylX'r*, (11)

where the estimator variance is Var(uj] = (X'X)~lcr2. To test the null
hypothesis that there is no outlier at t — T, we can use the statistic

T = (X'X)1/2u/a, (12)

which is distributed ./V(0,1) under the null.
In practice, the parameters of model (2) will not be known and they

will have to be estimated. Under these circumstances, the usual procedure
consists of estimating first the parameters of model (2) by exact maximum
likelihood, as if there were no outliers, and then using instead of (11) and
(12) their sample counterparts

u> = (X'X^X'r*, T = (X'X)l/2u>/a,

which are obtained by replacing in (11) and (12) the unknown parameters
with their estimates. It can be shown that f is asymptotically equivalent to
r. See Chang, Tiao and Chen (1988), p. 196. Each matrix X and, therefore,
X'X depends on the type of the outlier.

To see whether there is an outlier at t = T, the four estimators a>/o(T),
¿>Ao(T}, &Tc(T) and u>Ls(T) are first computed, along with the statistics
tio(T), TAO(T\ TTC(T) and TLS(T), where the subindex refers to the outlier
type. Then, as proposed by Chang, Tiao and Chen (1988), the statistic
AT = max{\ho(T)\,\tAO(T)\,\T?c(T)\,\tLs(T)\} is used. If AT > Cf, where
C is a predetermined critical value, then there is the possibility of an outlier
of the type given by the subindex of the statistic f for which the maximum
is obtained.

Since the time t = T at which the outlier occurs is unknown in practice,
the criterium based on the likelihood quotient of Chang y Tiao (1983), leads
to repeat the previous operation for t = 1,..., N and compute A = maxt\t =
|Tfp(T)|, where tp can be 10, AO, TC or LS. If A > C7, then there is an outlier
of type tp at T.

Once the type of an outlier at t = T is known, the series and the residuals
can be corrected for its effect using (7) and (10).
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Up to now, we have assumed that r* and X were computed by means of
an "exact" filter, which was the Kalman filter. This is the correct thing to
do, since the number of observations in a time series is always finite and we
cannot apply the semi-infinite filter, given by the inverse of the series model
w(B) = 1 + 7Ti# + 7T2#

2 + • • • = <f»(B)6(B}l9(B\ to (7) to obtain

7r(5K = u(K(B}v(B}It(T}} + a(i), t = 1,..., N,

instead of (9). In practice, the usual procedure consists of truncating the filter
7r(.6) and disregarding some observations at the beginning of the series. See
Chen and Liu (1993), p. 285. In the procedure proposed in this document,
the residuals are filtered with an exact filter to obtain r* and the filter ir(B)
is used to filter the vector Y in (8).

3.2 The Case of Multiple Outliers
When multiple outliers are present, we should use instead of (7) the model

z*(t) = z ( t ) + '£uw(B)It(ti). (13)
¿=i

As shown in Chen and Liu (1993), the estimators of the a;,- obtained simul-
taneously using (13), can be very different from the ones obtained by an
iterative process using the results of the previous Section. That is, by ob-
taining first o>i, then £2 ? etc. For this reason, it is important that every
algorithm for outlier detection performs at some point multiple regressions
to detect spurious outliers and correct the bias produced in the estimators
sequentially obtained.

In order to estimate the parameters in the multiple regressions, when the
parameters of the ARIMA model (2) are assumed to be known, the algorithm
proposed in this document uses first the Kalman filter like when we moved
from (8) to (9). Then, the estimators of the u>¿ and the corresponding sta-
tistics are computed using (11) and (12). This is done in an efficient manner,
using the QR algorithm and Housholder transformations. A more detailed
description will be given in Section 5.
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3.3 Estimation of the Standard Deviation a of the Re-
siduals

When outliers are present in the series, the usual sample estimator can ove-
restimate 6. For this reason, it is advisable to use a robust estimator. In the
proposed procedure the estimator used is the MAD estimator, defined by

a = 1.483 x median{\r*(t) - f*|},

where f* is the median of the estimated residuals r* = L~lz*. The parameters
of the model were assumed to be known in the previous formula. If they were
unknown, they would be replaced with their estimates, as usual.

3.4 Description of the Proposed Procedure

For outlier treatment, the proposed procedure assumes that the orders (p, d, q)
of model (2) are known and it proceeds iteratively. In the first stage, outliers
are detected one by one and the model parameters are modified after each
outlier has been detected. When no more outliers have been detected, the
procedure goes to the second stage, where a multiple regression is performed.
The outliers with the lowest i-value is discarded and the procedure goes back
to the first stage to iterate.

The procedure used to incorporate or reject outliers is similar to the step-
wise regression procedure for selecting the "best" regression equation. This
results in a more robust procedure than that of Chen and Liu (1993), which
uses "backward elimination" and may therefore detect too many outliers in
the first stage of the procedure.

Up to now, we have supposed that there were no regression effects, but
it is easy to incorporate these effects into the proposed procedure. Let the
series follow the regression model with ARIMA errors

*(*) = yW+ K*), < = !,...,#, (14)
where /3 — (/3i,. . . , /?&)' is the vector containing the regression parameters,
which may include the mean as the first component, {z(t}} is the observed
series, {y(t)} are the vectors containing the regression variables and {v(t)}
follows the ARIMA model (2) with /w = 0. Then, the algorithm proposed
for automatic detection and correction of outliers, described in detail, is the
following
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Initialization

If there are any regression variables in the model, included the mean,
the regression coefficients are estimated by OLS and the series is cor-
rected for their effects.

Stage I: Detection and estimation of outliers one by one

1.1) The ARIMA parameters are estimated, using Hannan-Rissanen's method
and the series corrected for all regression effects present at the time,
included the outliers so far detected.

1.2) Considering the estimates of the ARIMA parameters obtained in I.I
as fixed, the regression coefficients are estimated by GLS and their
t statistics are computed. To this end, the fast algorithm of Morf,
Sidhu and Kailath (1974) is used, followed by the QR algorithm. New
estimated residuals are obtained.

1.3) With the estimated residuals obtained in 1.2, the robust MAD estimator
of the standard deviation of the residuals is computed.

1.4) If u = (ud+i , . . . , MAT)', where d is the degree of the differencing operator,
denotes the differenced series, the statistics Tio(t), TAo(t}, TLS(Í) and
TTC(Í) are computed for t = d + 1,..., N. To this end, the residuals
computed in 1.2 and the MAD obtained in 1.3 are used. Let, for each
t = d + 1,. . . , JV, At = max{\TIO(t)\, \TAO(t)\, \TTc(t)\, \tLs(t)\}. H A =
maxt\t = \Ttp(T)\ > C, where C is a pre-selected critical value, then
there is a possible outlier of type tp at T. The subindex tp can be
IO, AO, TC or LS. If no outlier has been found the first time the
algorithm passes through this point, then stop. The series is free from
outlier effects. If no outlier has been found, but it is not the first
time that the algorithm passes through this point, then go to II. 1. If,
on the contrary, an outlier has been found, then correct the series for
all regression effects, using the estimates obtained in 1.2 and the last
outlier coefficient estimate obtained while computing A, and go back to
I.I to iterate.
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Stage II: Multiple Regression

Using the estimates of the multiple regression and their t statistics
obtained the last time the algorithm passed through 1.2, check whether
there are any outliers with a t statistic < C, where C is the same
critical value than in 1.4. If there aren't any, stop. If, on the contrary,
there are some, then remove the one with the lowest absolute i-value
and go back to 1.2 to iterate.
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4 Preliminary Tests and the Missing Obser-
vations Case

In this section, the algorithms of the previous sections are extended to the
case in which there are missing observations. Also, tests for the log-level
specification and for the presence of Trading Day and Easter effects are given.

4.1 Missing Observations
The proposed procedure can be extended easily to the case of missing obser-
vations. Missing observations are treated as additive outliers. This implies
that we can work with a complete series, because the missing values are first
assigned tentative values. Then, after the model has been estimated, the dif-
ference between the tentative value and the estimated regression coefficient
is the interpolated value. See Gómez, Maravall and Peña (1997) for details.

Since we work with a complete series (there are no holes in it), we can
use same algorithms described previously for automatic model identification
and for automatic detection and correction of outliers. The tentative values
assigned to the missing observations are the semisum of the two adjacent
values.

4.2 Tests for the Log—Level Specification
The first test for the log-level specification is based on the maximum like-
lihood estimation of the parameter A in the Box-Cox transformations. We
fit an airline model with mean to the data, first in logs (A = 0) and then
without logs (A = 1). Let z = (z\,..., ZN)' be the differenced series and let
T be a transformation of the data, which can be any of the Box-Cox trans-
formations. It is assumed that T(z) is normally distributed with mean zero
and Var(T(^)) = <72S. Then, the logarithm of the density function f ( z ) of z
is

In (/(*)) = k - i {jVln(<72) + In |S| + T(z)'JT*T(z)lo* + ln(l/J(T))2} ,

where A; is a constant and J(T) is the jacobian of the transformation. Con-
sidering the parameter A in the T transformation fixed, the previous density
function is maximized first with respect to the other model parameters. It
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is easy to see that cr2 can be concentrated out of this function by repla-
cing it with the maximum likelihood estimator a1 = T(z)''E~lT(z)/N. The
concentrated function is

'(*) = -\{N HT(z)'X-lT(z)) + ln(l/J(T))2} + • • • ,

where the dots indicate terms that do not depend on the value of A associated
with the transformation T. After having maximized with respect to all model
parameters different from A, we maximize with respect to A. Denoting the
sum of squares T(z}'T1~

lT(z) by S(z,T], the maximum likelihood principle
leads to the minimization of the quantity S(z,T}(l/J(T)Y/N. It is easy to
see that (1/J(T))1/W is the geometric mean in the case of the logarithmic
transformation, and unity in the case of no transformation. Therefore, the
test compares the sum of squares of the model without logs with the sum
of squares multiplied by the square of the geometric mean in the case of the
model in logs. Logs are taken in case this last function is the minimum.

The other test is the following. First, the data is divided into groups
of succesive observations of length / equal to a multiple of the number of
observations per year s. That is, the first group is formed with the first I
observations, the second group is formed with observations I + 1 to 2/, etc.
Then, for each group, the observations are sorted and the smallest and largest
observations are rejected. This is done for protection against outliers. With
the other observations, the range and mean are computed. Finally, a range-
mean regression of the form rt = a + flmt + ut is performed. The criterion is
the slope /?. If /3 is greater than a specified value, logs are taken.

4.3 Trading Day and Easter Effects
Traditionally, six variables have been used to model the trading day effect.
These are: (no. of Mondays) - (no. of Sundays), .... (no. of Saturdays) - (no.
of Sundays).

The motivation for using these variables is that it is desirable that the
sum of the effects of each day of the week cancel out. Mathematically, this
can be expressed by the requirement that the trading day coefficients ft, j
= 1,..., 7, verify £j=i fa = 0, which implies fr = - £<>=1 ft.

Sometimes, a seventh variable, called the length-of-month variable, is
also included. This variable is defined as mt — ra, where mt is the length of
the month (in days) and m = 30.4375 is the average month length.
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There is the possibility of considering a more parsimonious modeling of
the trading day effect by using one variable instead of six. In this case, the
days of the week are first divided into two categories: working days and non-
working days. Then, the variable is defined as (no. of (M, T, W, Th, F)) -
(no. of (Sat, Sun} x 5/2).

Again, the motivation is that it is desirable that the trading day coeffi-
cients /3j, j — 1,..., 7 verify £}J=1 fa = 0. Since fii = fa = • • • = fa and fa
= /?7, we have 5/?i = —2fa.

The Easter variable models a constant change in the level of daily activity
during the d days before Easter. The value of d is usually supplied by the
user.

The variable has zeros for all months different from March and April. The
value assigned to March is equal to PM — mMi where PM is the proportion
of the d days that fall on that month and mj\^ is the mean value of the
proportions of the d days that fall on March over a long period of time. The
value assigned to April is PA — rriA, where PA and ra¿ are defined analogously.
Usually, a value of ITIM = m^ — 1/2 is a good approximation.

Since PA — rriA = 1 — PM — (1 — ̂ M) = ~(PM — ̂ M), the sum of the
effects of both months, March and April, cancel out, a desirable feature.

Since Trading Day and Easter effects are modeled by means of regression
variables, a possible test for these effects is the following. If no model has been
identified, specify an airline model with mean. Otherwise, use the identified
model. Then, using the differenced series y, apply first the Kalman filter
to move from model (16) to model (17), where /3 is the vector of regression
parameters, that includes the Trading'Day and/or Easter parameters. Since
model (17) is an OLS model, we can use an ordinary F-test to test if all
Trading Day parameters are zero or not. A ¿-test can be used to test if the
Easter parameter is zero.

5 Computational Aspects

A Fortran program has been written by the author for personal computers,
workstations and mainframes, that implements the proposed procedure. This
program is part of a larger program called TRAMO, which the author has
developed together with Agustín Maravall. The program is freely available
at the internet address
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http://www.bde.es
To estimate the regression parameters of a regression model with ARIMA

errors, when the autoregressive and moving average parameters of the ARIMA
model are assumed to be known, the proposed procedure uses the following
algorithm. Let the observed series z = (2(1),..., z(N))' follow the regression
model with ARIMA errors

z = Y/3 + u, (15)

where /? = ( /3j , . . . , /?&)' is the vector containing the regression parameters,
which may include the mean as the first component, Y is an N x k matrix
of full column rank and u follows the ARIMA model (2) with (J, = 0, which is
supposed to be known. After differencing 2, the columns of Y and u in (15),
it is obtained that

y = X/3 + v, (16)

where y = (y(d+ 1),..., y(N))', X is an (TV — d) x k matrix, the components
of v = (v(d + 1),... ,t>(JV))' follow the ARMA model <j>(B)v(t) = 0(B)a(t)
and it is assumed that the degree of the differencing polynomial S(B) is d.

If Var(v) = <r2fi and 0 = LL', with L lower triangular, is the Cholesky
decomposition of Í), then, premultiplying (16) by L~l, it is obtained that

L-*y = L-*Xp + L-\, (17)

which is an OLS model. As described in Section 3.1, the Kalman filter can
be applied to y and the columns of the X matrix to move from (16) to
(17). /3 can now efficiently estimated in (17) by means of the QR algorithm.
This last algorithm produces an orthogonal matrix Q such that Q'L~^X =
(jR', 0)', where R is a nonsingular upper triangular matrix. Partitioning Q' =
(Qi, Qz)' conforming to (Rf, 0)', one can move from (17) to

Q(L~ly = Rp + QL-\

Q'2L-ly = +Q'2L~lv,

from which $ = R-^Q'^y and a2 = y'(L-lyQ2Q'2L-ly/(N - d - k) are
easily obtained. The Q matrix is obtained by means of Housholder transfor-
mations.
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6 Examples and Conclusions

The proposed procedure has been tested using real and simulated series and
the results have been very satisfactory. The automatic model identification
procedure, without performing detection and correction of outliers, has been
applied to 36 series which follow models covering a very broad spectrum.
The results are reported in appendix A. Of the 36 series, 13 are series which
have appeared in published articles and the rest are simulated series. For
the simulated series, the proposed procedure has identified the same model
without any problem, whereas for the other series, the identified model has
been the same or a better model. The results are similar to the ones obtained
with the "SCA-Expert" modulus of the SCA software package, although the
results of TRAMO are sometimes better.

In addition to these 36 series, 252 series corresponding to several com-
ponents of the Spanish industrial production index have also been modeled,
combining the automatic model identification procedure with the procedure
for automatic detection and correction of outliers, since these series present
a lot of outliers. Again, the results have been rather good in terms of the
goodness of fit.

In order to illustrate the use of the proposed algorithm for automatic
detection and correction of outliers, we will consider the example of the
ozone (Os) mean levels in Los Angeles city during the period of January
1955 to December 1972. This series was analyzed by Box and Tiao (1975)
as an example of a series for which intervention analysis could be applied.

Box and Tiao (1975) identified three intervention variables and a multi-
plicative moving average model for the series differenced with seasonal diffe-
rence. More specifically, the model is

z(t)= w! INTl(t) + ^j^INT2S(t)

+ I^w^w+ii±M^^!)o((),
where INT1 is 1 in January 1960 and the following months and 0 otherwise,
INT2S is 1 in the summer months, starting in June 1966, and 0 otherwise,
and INT2W is 1 in the winter months, starting in 1966, and 0 otherwise.

The series, together with its intervention variables, was subject to the
proposed procedure for automatic detection and correction of outliers. Using
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Table 1: Outliers Identified for the Ozone Series

Outlier Estimate i-value Type
* = 21
i = 39
i = 43

2.359
-1.983
-1.930

3.37
-3.40
-3.30

AO
TC
TC

program TRAMO and a critical value C = 3, the following outliers were
identified

The results are practically identical to the ones obtained with the SCA-
Expert modulus of the SCA package for automatic detection and correction
of outliers.

To illustrate the combined use of the automatic model identification pro-
cedure and the procedure for automatic detection and correction of outliers,
we consider the example of the monthly retail sales in Department Stores of
Hillmer, Bell and Tiao (1983). For the logged series, these authors identified
the ARIMA model

1 -4- 0 R^

™»*M = i + ¿B + WPa(t)- <18>
When the model followed by the series is unknown and the series is belie-

ved to present outliers, the proposed procedure uses the algorithm of Section
1, which sequentially combines the automatic model identification procedure
and the procedure for automatic detection and correction of outliers. Fol-
lowing the instructions given by the user, program TRAMO can go through
up to three rounds. In the first round, it uses the default model and default
critical value C7, or the model and critical value entered by the user, and
detects and corrects the series for outliers. The default model is the airline
model of Box and Jenkins (1972) and the default critical value C depends
on the series length. In the second round, using the outlier corrected se-
ries, the program automatically identifies a model and, with that model, it
performs a second automatic detection and correction of outliers. For this
second round, the program decreases the critical level C used for outlier de-
tection and the user can control the amount of the decrease. Usually, these
two rounds are enough to identify a model with a good fit. If this is not
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Table 2: Outliers Identified for the Retail Sales Series

Outlier Estimate i-value Type
i = 45
¿ = 96
< = 112

.096

.084
-.176

5.23
-4.38

-10.18

TC
AO
LS

the case, the program iterates. After the third round, it the fit is still not
acceptable, the program specifies a general model. This general model is an
ARMA(3, l)(0,l)s or an ARMA(4,0)(0,l)s for the differenced series, where
the differencing orders are the same of the last round. At some point of the
procedure, the identified model is compared to the airline model and the
model with the best fit is chosen. This is done because the airline model is
a robust model and departures from this model can be unstable.

Using program TRAMO in the manner just described, the following results
were obtained for the retail sales series. In the first round, using the default
model (the airline model) and a critical value C = 3.5, the program detected
outliers at t = 45, of type TC, at t = 96, of type AO and at t = 112, of type
LS. After correcting the series for the outlier effects, the program identified
first the differencing polynomial $(B) — VVi2, without mean. Then, the
program identified model (18). For this model,using a critical value of 3, the
program detected the same outliers than before.

Again, the results are practically identical to the ones obtained with the
SCA package, when first the SCA-Expert modulus and then the "Extended
UTS" modulus for automatic detection and correction of outliers are used.

As a conclusion, we can say that the proposed procedure has proved
robust and easy to implement and, at the same time, it has a solid theoretical
background. In addition, since it uses linear regression techniques only, it is
not computationally expensive. By combining both the modulus of automatic
model identification and the modulus for automatic detection and correction
of outliers, the productivity of the user can be greatly increased. If he is a
time series expert, he is relieved of mundane and repetitive chores and if he
is not an expert, he can use a methodology that previously could only be
used by the experts.
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Appendix A: Summary of the Automatic Mo-
del Identification for 36 Real or Simulated Se-
ries

~ ~ S i m u l a t e d models o r maim- Model obtained bv ^
Series ,, ., ,.fi A , , _ Comments

ally identified models TRAMO
(1) Maddala (1972)

Grunfeld's inversion
series (N=20)

(2) Hillmer, BeU and
Tiao (1983) Clothing
sales (N=153)

(3) HiUmer, BeU and
Tiao (1983) Hard-
ware sales (N=155)

(4) HiUmer, BeU and
Tiao (1983) Variety
stores sales (N=153)

(5) Box and Tiao (1983)
Ozone sales (N=216)

(6) Box and Tiao (1983)
CPI series (N=234)

(7) Chatfield and
Prothero (1973)
Monthly sales series
(N=77)

(8) Hamilton and Watts
(1978) Weekday
coffee data (N=178)

(9) Box and Jenkins
(1976) Series A
(N=197)

(10) Box and Jenkins
(1976) Series C
(N=226)

(11) Box and Jenkins
(1976) Series E
(N=100)

(1 + faB + (¡>2B
2)z(t) =

C + o(i)
same as left

VV122(i) = (l+OiB+O^B2) same as left
x(l + fl12512)a(i)

VV12z(i) = (1 + M)
x(l + 0125

12)a(i)
same as left

(l+0i.B+<&!.02)VVi2z(i) = same as left
(1 + ^5)0(4)

V12z(i) = € + (! + 01.8) same as left
x(l + 012JB

12)a(i)
Vz(t) = C+(1 + 5i5)o(i) (1 + 4>12B

12Vz(t) =
(1 + 0i-B)a(i)

(1 + ^i5)VV12z(i) = Vaz(t) = C
(l + enB)a(t) +(1 + 9,B + e2B

2)a(t)

(b)

(c)

(1 + faB)Vz(t) =
(1 + e5B

5)a(t)

Vz(t) = (1 + 0i5)a(i), or
(1 + ̂ 5X0 =
C + Cl + tfi^Xi)
(1 + ^B)Vz(t) = a(i), or
V=Xi) =
(1 + 9iBl + 02B

2)a(t)
(1 + faB + <t>2B*)z(t) =
C + o(i), or
(l + faB + faBt + foB^t)
= C + (l + g1J

1)a«)

Vz(i) = C+ (1 + 0iB) (a)
x(l + 05B

5)a(t)

Vz(t) = (1 + Íx5)o(í) (d)

(1 + &5)V*(i) = a(<) (d)

(1 + ̂ B+^52X*) = (f)
C + (1 + tfi)a(i)
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Simulated models or manu- Model obtained by ^ ~
Series „ ., ,.fl , A , _ Comments

ally identified models TRAMO
(12) Box and Jenkins

(1976) Series F
(N=70)

(13) Box and Jenkins
(1976) Series G
(N=144)

(14) Ljung and Box
(1979) Simulated
series (N=75)

(15) Tsay and Tiao
(1984) Simulated
series with AR
complex unit roots
(N=100)

(16) Simulated series
with AR complex
unit roots (N=80)

(17) Box and Tiao
Simulated series Rl
(N=150)

(18) Box and Tiao
Simulated series R2
(N=162)

(19) Box and Tiao
Simulated series R3
(N=147)

(20) Box and Tiao
Simulated series R4
(N=161)

(21) Box and Tiao
Simulated series R5
(N=155)

(22) Box and Tiao
Simulated series R6
(N=178)

(23) Box and Tiao
Simulated series R7
(N=149)

(1 + <t)iB}z(i) = C + a(t), same as left

Wi2«(i) = (1 + 0i5)
x(l + 012JB

12)a(/),

z(t) = (1 + 9iB)a(t)

same as left

same as left

(1 + faB + <f>2B
2)V2z(t) = same as left

(1 + 0i#)a(i)

(1 + <f>iB + <?í>2-02)VV4z(í) = same as left
(1 + OiB + 025

2)o(i)

z(i) = C+(l+01+02B
2)a(t) same as left

(1 + ¿i + faB*}z(t) =
C + a(t)

same as left

Vz(t) = C + (1 + 0iJB)a(i) same as left

Vz(t) = (l+Orf+e^Mt) (1 + <j>6B
6)Vz(t)

(1 + 0i5)a(i)

V2*(i) =
(I + 9^ + 62B

2)a(t)
same as left

(1 + faB + (/>2B
2)Vz(t) = same as left

a(t)

(1 + 4>iB}z(i) = C + c(i) same as left

(e)
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Series
Simulated models or maim- Model obtained by ^ ~

11 . i .,. i i i Comments
ally identified models TRAMO

(24) Box and Tiao
Simulated series R8
(N=148)

(25) Box and Tiao
Simulated series R9
(N=151)

(26) Box and Tiao
Simulated series
RIO (N=146)

(27) Box and Tiao
Simulated series SI
(N=150)

(28) Box and Tiao
Simulated series S2
(N=162)

(29) Box and Tiao
Simulated series S3
(N=147)

(30) Box and Tiao
Simulated series S4
(N=161)

(31) Box and Tiao
Simulated series S5
(N=155)

(32) Box and Tiao
Simulated series S6
(N=178)

(33) Box and Tiao
Simulated series S7
(N=149)

(34) Box and Tiao
Simulated series S8
(N=148)

(35) Box and Tiao
Simulated series S9
(N=151)

(36) Box and Tiao
Simulated series S10
(N=146)

(1 + 4>iB}Vz(t] = C + a(t) same as left

Vz(t) = (1 + 0i5)a(i)

Vz(t) = C
+(l + 0,B + e2B*)a(t)

VV12z(i) = (1 + 9iB)
x(l + í25")a(í)

(1 + 4>iB}V^z(t} =
(I + 61B

1^a(t)

same as left

same as left

same as left

same as left

Vz(t) = (1 + 0!.012)a(i) same as left

(l + ̂ 512)z(i) =
C + (1 + ̂ 5)0(0

same as left

(1 + &B)Vi2*(i) = C + a(t) same as left

W4z(t) = (1 + 0iB)a(t) same as left

V2(l + 0!56)z(i) = a(t) same as left

(1 + faB + <f>2B
2)z(t) = same as left

C + (1 + BiB'W)

V12z(t) = C + (1 + 01B)a(t) same as left

VVi2z(t) =
(1 + 9iB + e2B

12)a(t)
VV12z(i) = (1 + O^B] (e)
x(l + 025

12)a(i)
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(a) The model obtained by TRAMO is better, although the original model is also
acceptable

(b) The model obtained by TRAMO is better. However, the seasonally is small
(«^i = —.17) and may be neglected.

(c) The model obtained by TRAMO is better. The model used in the original
article is over differenced.

(d) In the original book, two alternative models were considered. TRAMO ob-
tains the best one.

(e) TRAMO uses, in its automatic option, multiplicative models due to their
simplicity and that they have less problems with nonstationarity and nonin-
vertibility. However, by selecting a non-automatic option, the analyst may
use non-multiplicative models if he prefers to do so.

(f) In the original book, two alternative models were considered. TRAMO ob-
tains a model better than any of them.
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