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Abstract

This paper focuses on the issue of trend and cycle decomposition. Firstly, three well-
known univariate methods of stochastic detrending are reviewed and some new results
concerning these methods are reported. The methods are the Hodrick-Prescott (HP)
filter, the Beveridge-Nelson (BN) decomposition and a symmetric moving average fil-
ter proposed by Baxter and King (BK). Then, a two-step model-based procedure is
proposed to circumvent some of the problems associated with ad-hoc filtering. The
first step consists of using a model-based procedure to estimate the trend-cycle signal,
whereas the second step applies a fixed low-pass filter to this estimate to obtain the
trend and cyclical components. The proposed procedure presents four advantages over
the alternative methods. First, the trend-cycle component obtained in the first step
depends on the characteristics of the series. Second, the series is corrected for outlier
and other deterministic effects. Third, the fixed filter for annual data used in the sec-
ond step approximates the gain of the ideal filter better than the HP filter and finally
it requires fewer parameters than the BK filter.
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1. Introduction

Although filters have been widely used in economics, it was not until the
seminal work of Kydland and Prescott (1982) that they began to play the
central role they have nowadays. The main reason behind this phenomenon
is that, in the Real Business Cycle Literature, the usual way to evaluate
calibrated models is to compare some statistics of the simulated series with
those of the filtered observed series. Recently, a lot of work concerning the
improvement of the behaviour of some of those statistics has been done.
Some examples are the standard deviation of investment or the correlation
between productivity and hours worked (for a general review, see Hansen
and Wright (1994)), or with important theoretical advances like the use of
heterogeneous agents. However, much less thought has been given to the
possibility of improving the statistical tools used to filter the series. Since
the work of Kydland and Prescott (1982), the standard approach for filtering
economic time series has been the use of the Hodrick-Prescott filter (1997),
henceforth HP.

Despite the fact that a relatively common element of this extensive literature
has been that the empirical measurement is based on quarterly US data, in
the last few years, the growing popularity of these models has motivated
numerous applications to other countries, mainly in the area of the OECD.
Some of these countries have not quarterly data available or the length of the
sample period is too short to compute adequate statistics. As a consequence,
there is a growing literature that uses annual data to evaluate simulated
series. For example, both Correia, Neves and Rebelo (1995), with regard to
the Portuguese economy, and Backus and Kehoe (1992), in their study of
international business cycles, use annual data with a smoothing parameter
of the HP filter equal to 100. Over and above, besides the traditional use
of the HP filter in the Real Business Cycle Literature, in the last few years
alternative applications of this filter have arisen, both at international and
national organizations. Thus, it is very common the use of the HP filter
to estimate the trend component of the GDP, with the purpose of finding
something resembling the potential output, or to compute structural and
cyclical budget deficits, using annual data. In all these cases, these exercises
are also carried out with a smoothing parameter which is equal to or higher
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than 100.

Although the HP filter with a smoothing parameter equal to 1600 often
performs rather well for quarterly data, this paper shows that the use of this
filter with annual data and values of the smoothing parameter as high as
400, or even the substantially lower 100, can be misleading and proves that a
smoothing parameter of 10 is more adequate in this case. This result, which
is obtained by analyzing the gain function of the filter, coincides with the
one reported by Baxter and King (1995).

At the same time, some authors have raised further concerns about the qual-
ities of the HP filter (as, for example, King and Rebelo (1993), Harvey and
Jaeger (1993) and Cogley and Nason (1995)) and others have proposed al-
ternative procedures like Baxter and King (1995) or, previously, Beveridge
and Nelson (1981). All the above reasons are enough to think about filters
from an alternative perspective rooted in the tradition of Butterworth filters
commonly used by engineers. Thus, three different univariate methods of
stochastic detrending are reviewed and several new results concerning these
methods are presented. These methods are the HP filter, the Beveridge-
Nelson decomposition, henceforth BN, and the symmetric moving average
filter proposed by Baxter and King (1995), henceforth BK.

After reviewing these univariate methods, a new two-step procedure to esti-
mate the trend and cycle components is proposed. The first step consists of
using a model-based signal extraction procedure to estimate the trend-cycle
component, whereas the second step applies a fixed low-pass filter to this
trend-cycle to obtain the trend.1 The cycle is computed as the difference be-
tween the first and the second estimated components. The idea behind this
method is to overcome some of the problems associated with ad-hoc filtering.

The method proposed in this paper displays four advantages over the alterna-
tive filters. First, it is possible to prevent a bad use of the filter by analyzing
the original series and accounting for its characteristics of the series. Sec-
ond, the series can be corrected for outliers, which can significantly alter the

1 This procedure can be implemented using the programs TRAMO and SEATS de-
veloped by Gómez and Maravall (1997).
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estimation of the trend and cycle components. Third, the proposed fixed fil-
ter is a better approximation than the HP or the BN filter to the ideal filter,
specially for annual data. Fourth, it needs fewer parameters and predictions
than the BK filter.

The structure of this paper is as follows. In the second section we review three
different filtering methods to obtain the business cycle and some aspects of
spectral theory associated with them, which will be useful to interpret their
performance when applied to usual time series. We also analyze the main
characteristics of our proposed filter. In the third section we compare the
performance^of this fixed filter with that of the HP filter, applying both meth-
ods to the GDP of OECD countries from 1955 to 1995, using annual data.
Different exercises show how the use of these filters alters some usual statis-
tics such as volatility or international comovements of cyclical components
across countries. Finally, the paper concludes with the main results in the
fourth section.
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2. Different Filtering Methods to Obtain the Business
Cycle

2.1 Linear Time Invariant Filters and the Business
Cycle: some analytical tools

Given an infinite time series {zt}, a linear time invariant filter that produces
a new time series {zt} is a transformation of the form

oo

*t = Y, h^t~3
j=—oo

In terms of the lag operator, defined by Lzt = Zt-i, the filter can be expressed
more compactly as

oo

zt = H(L)zt = Y, hiLJZ*> W
¿=-oo

where H(L) = Y^T=-oo hi^ and L* = L(L>~1}. The filter is said to be sym-
metric if h-j = hj for all j = 1,2,..., in which case H(L) can be written
as

oo

H(L) = h0 + Y,hAV + L~J)
j=i

Every stationary process {zt} has a representation in terms of periodic sto-
chastic components that resembles the representation of a periodic function
as a Fourier series. This is the so-called spectral representation, which math-
ematically is expressed as

Zt = i ¿txdY(x) (2)
J--K

Here, {l^rc)} is a stochastic process with independent increments, continu-
ous on the right, and i = -\/—\. Heuristically, the previous integral can be
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interpreted as the limit in mean squared of sums of sinusoids with stochastic
coefficients. The effect of the linear filter (1) in the spectral representation
(2) is the following. Define the function H(x) as the Fourier transform of the
sequence (. . . , /i_i, ho, hi,...), that is

H(x) = ¿ e-^hj, (3)
J=-oo

which is obtained by replacing L in H(L} with e lx. Then, it can be shown
that the spectral representation of the transformed series ~zt is

zt = i H(x)eitxdY(x) (4)
J-K

The function H(x) is usually called the frequency response function of the
filter. Equation (4) shows intuitively the effect of the filter H(L) on the
input series {zt}. The effect on the sinusoids at frequency x E [—7r,7r] is
twofold. First, the amplitudes are multiplied by the modulus G(x) = \H(x)\
of the complex number H(x) and second, there is a shift effect measured
by the argument <j)(x) of H(x). The functions G(x) and (/)(x) are usually
called gain and phase function of the filter, respectively. Note that if the
filter is symmetric, there is no phase effect, since the number H(x) is a real
number due to the cancellation of the sine functions in the expression (3).
This feature makes symmetric filters desirable in all practical applications.

Given the autocovariances ^(j) = E(zt+jZt) of a stationary process {zt},
which is assumed to follow an ARMA model, the spectrum of the process
f(x) is defined as the Fourier transform of the covariance sequence ( . . . ,
7(-l), 7(0), 7(1),...), that is

/(*) = ¿ -E ^e'ijx2?r
j=—CO

For example, for a white noise series {a*} with Var(at) = a\, the spectrum
is f ( x ) = cr^/27T. The autocovariances ^(j) are given by the inverse Fourier
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transform of f(x)

7Ü') = f eite/(*) (5)
J--K

If fz(x) is the spectrum of the series {zt} in (1), then the spectrum f-z(x) of
the filtered series {zt} is given by the formula

Mx) = \H(x)\2fz(x), *e[o,7r]

As an application of this formula, suppose that the series {zt} follows the
ARMA model <f>(L)zt = 0(L)at, where Var(at) — '(?*.• Then, the series {zt}
can be seen as the result of applying the filter H(L) = 0(L)/(j)(L) to the white
noise series {at}. Therefore, the spectrum is

1 9(6-^)6(6™) 2 _ 1 I %-**) |2 ,
7 W 27T <¿>(e-íaO<¿>(eía:) a 27T | ¿(e-«) |2 °

Note that if j = 0 en (5), we obtain the variance of the process expressed as an
integral of the spectrum. This can be seen as how the stochastic components
associated with the different frequencies contribute to the variance of the
series.

Traditionally, filters have been designed in terms of their desired effect on a
certain band of frequencies. So, a low-pass filter is a filter which, ideally, has
a gain function equal to one for the frequencies near to zero and a value of
zero for all the other frequencies. More generally, a band-pass filter for the
band [#i,;E2] is a filter such that the gain function G(x) = I for x E [xi,Xi]
and is zero otherwise. Note that frequency and period are related by the
well-known formula x = 2?r/T, where x is the frequency and T is the period.

Before describing the different techniques for measuring business cycles, we
have to address a central issue, namely, the definition of a business cycle.
Nowadays it is widely accepted that business cycles are cyclical components
of no more than thirty two quarters (eight years), and no less than six quar-
ters in duration (Prescott (1986) and Baxter and King (1995)). If this de-
finition is accepted without criticism, the ideal filter to obtain the business
cycle would be a band-pass filter which passes all frequencies in the desired
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band. In order to obtain the ideal filter for yearly data, one has to take into
account the fact that the greatest detectable period is two. Therefore, the
ideal filter passes, all stochastic components with frequencies greater than or
equal to 27T/8. This filter can be seen in Figure 1.

2.2 The Hodrick-Prescott Filter

In recent years, there has been a dramatic growth in the use of the filter pro-
posed by Hodrick and Prescott (1980), although the idea that underlies the
development of this filter seems to be an old one. Thus, Gersch and Kita-
gawa (1990) trace back this idea to Whittaker (1923). Following Gersch and
Kitagawa (1990), the problem treated by Whittaker consisted of decompos-
ing the given observations Zt, t = 1,..., JV, as the sum of a "smooth" function
~zt and observation noise

zt = zt + zc
t (6)

Here, one tries to estimate the unknown "z^ t = 1,..., JV, which in a typical
application is the trend of a nonstationary time series. Whittaker suggested
that the solution balance a trade-off of goodness of fit to the data and good-
ness of fit to a smoothness criterion. This idea was realized by minimizing

f>-*t)
2 + A¿(V fc* t)

2, (?)
t=l t=k+l

where Vfc = V(Vfc~1), for some appropriately chosen smoothness trade-off
parameter A.

The properties of the solution to the problem (6)-(7) are clear. If A = 0,
~Zt = Zt and the solution is a replica of the observations. As A becomes
increasingly large, the smoothness constraint dominates the solution and
this satisfies a fcth-order constraint. .For large A and k = 1, the solution is a
constant; for k = 2, it is a straight line; and so on. Whittaker left the choice
of A to the investigator. The notable feature is the success of Hodrick and
Prescott in choosing for quarterly data of the US economy a value of A =
1600 and A; = 2 in (7). We will return to this point later in this subsection.
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To obtain the HP filter, define the (N - 2 X N) matrix A

A =

/ 1 -2 1 0 0
0 1 - 2 1 0

0 0 0 0 0
V O O 0 0 0

... 0 0 0 0 \

. . . 0 0 0 0

. . . 1 - 2 1 0

... 0 1 - 2 1 /

The minimization problem (7) can be reformulated as that of minimizing
with respect to ~z = (zi, ....'ZN}' the function (zc)'zc + X(Azy(Az), where zc =
(zi, ...ZC

N}'. Using standard matrix differentiation results, the solution can be
easily seen to be

z = (I + XAA)-^,

where z = ~z + z° is the observed series. The estimate of the business cycle is
then

z* =( / - ( / + XA'A)-1) z (8)

The filter characteristics are best seen in the frequency-domain. Since it is a
finite filter, the filtered series is of the form z\ = X^/Li dhtZh, where the dht
are the weights given by (8). In terms of the lag operator L, the filter can be
expressed as dt(L) = Y^i=i dhtL*~h and the filtered series as zl = dt(L)zt. It
is not a time-invariant filter and, therefore, the weights depend on the date
t as well as the lead/lag index h. For each date £, the frequency response
function of the filter is Ht(x) = dt(e-ix) = Y%=\dhtei(h~t)x, from which the
characteristics of the filter can be obtained. As shown in Baxter and King
(1995), the filter can behave very differently from the ideal filter at both ends
of the series, which means that the estimates of z\ for dates t close to both
ends of the series can be very poor.

This fact should be kept in mind by those who believe that the HP filter
does not involve any cost in terms of forecasts or backcasts. The situation is
precisely the opposite, that is, in order to improve the estimates at both ends
of the series, it is desirable to extend the series with forecasts and backcasts
obtained with some model, typically an ARIMA model. We will return to
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this point later. This property is also shared by all symmetric moving average
filters.

If we had models for the components in (6), it would be possible to have a
better understanding of the filter properties. In addition, by applying the
Wiener-Kolmogorov filters, we would obtain the infinite sample version of
the HP filter. Thus, the finite sample HP filter would be an approximation
to the infinite HP filter. The frequency response function of the infinite filter
would be very useful to determine how close it is to the ideal filter.

It is a remarkable fact that the problem of estimating the trend ~zt in (6) by
means of the minimization problem (7) is equivalent to estimating the signal
Zt in model (6), under the assumption that the components follow certain
models. Specifically, ~zt is assumed to follow the model

V2¿í = r¡t,

where the initial values z_i, ~ZQ are taken as unknown constants or equiva-
lently diffuse, the r)t is a sequence of i.i.d JV(0, cr2) and the z\ is a sequence
of i.i.d. N(Q, cr2) independent of the t]t. A proof of this result can be seen in
Kohn and Ansley (1988).

Using the models for the components, it is possible to derive the estimator of
z%, based on the doubly-infinite series {zt}, which is supposed to be known.
The estimator is given by the Wiener-Kolmogorov filter applied to the series,
since, as shown by Bell (1984), the Wiener-Kolmogorov filter can also be
applied to nonstationary time series. It is not difficult to show that the
formula for the estimator is

= 2 (1-L)»(1-L-*)'
* V2 + (1 - L)2(l - ir1)2^

= A(l - L)2(l'- ¿-1)2

l + Atl-L^l-L-1)2 i!

where L is the lag operator and A = o\fa^. Note that, since this filter is
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symmetric, no phase shift is introduced. Since z\ = Zt — Zt,

- 1
Zt~ I + \(1 - L)*(l - L-1)**

is the trend estimator.

The frequency response function H(x) of the infinite HP filter is obtained by
replacing L with e~lx in the previous expression for z%. After some manipu-
lation, we have

- 4A(1 - cosfo))2

{ ' 1 + 4A(1 - cos(o;))2

Since this function is real, it coincides with the gain function of the filter.
Further manipulation shows that

~- 1
)̂ = l - 1 + 16Asin4(;r/2)'

where the term after the minus sign in the previous formula is the gain
function of the trend filter. This gain function coincides with the squared
gain function of a Butterworth filter of the sine version, which has the general
expression

\G(x)\* = r ] i , m (9)
•i . sin(ay2)
1 -T [dn(i»0/2)J

These filters are low-pass filters that, ideally, pass all components with fre-
quencies less than or equal to a frequency x¡ > xc, with squared gain equal to
1/2 for x — xc. By choosing the parameters N and xc, they can be designed
to be as close as desired to the ideal filter.

Thus, for the HP filter, N = 2 and sin(o;c/2) = 1/(2A1/4). In the case of
quarterly data, xt = 2?r/32 and xc = 27T/39.7166 if A = 1600. The trend
filter, and the HP filter too, has gain equal to 1/2 for the frequency xc.
For example, the quarterly HP filter has gain equal to 1/2 for the period
of 39.7166 quarters. These facts are very important because they give an
indication on how to choose the value of A in the HP filter.
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Butterworth filters of the sine version are autoregressive filters, with the
degree of the autoregressive polynomial equal to N, which induce a phase
effect because they are not symmetric. That is, the Butterworth filter HB(L)
corresponding to (9) is of the form

Hm(L) =
PW

where /3(L) =b0 + b^L 4- • • • + bNLN and |G(o;)|2 = HB(e-ix)HB(eix) is the
squared gain of the filter. We can say that the trend filter HP(L) correspond-
ing to the HP filter is a "symmetrized" form of the Butterworth filter, since
it is of the form HP(L) = HB(L)HB(L~l).

Analyzing the gain function of the infinite HP filter for the different values
of A, the HP filter seems to approximate very well the ideal high-pass filter
that corresponds to the frequency x = 2?r/32 when A = 1600, passing only
those stochastic components with a period smaller than eight years. Notice
that, when used with quarterly data in order to obtain the business cycle
component, which corresponds to shocks with a period smaller than eight,
the HP filter should be applied to seasonally adjusted data. This is so because
the HP filter passes the seasonal component, which has peaks in the spectrum
for the seasonal frequencies 2?r/4 and 47T/4.

The situation is different when the HP filter is applied to data sampled
yearly. In this case, the cut-off frequency is 27T/8. This implies a value of
A considerably smaller than 400, frequently used in the literature. Applying
(9), it can be seen that a value A = 10 is more appropriate for annual data.2

However, the HP filter that corresponds to this value is not entirely satisfac-
tory because it contains significant leakage as well as significant compression,
as can be seen in Figure 2. In the filter jargon, leakage means that stochastic
components with undesirable frequencies are passed and compression that
some of the passed components with the correct frequencies are damped.

As mentioned above, in the more realistic situation, when only a finite series

2 This value coincides with the one proposed by Baxter and King (1995) for annual
data.
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Zti t = 1,. • • , AT, is known instead of the whole realization, it should be noted
that, although the HP filter gives estimates of the business cycle for all t
= 1,..., AT, the estimates given at both ends of the series can be very poor
and it may prove useful to extend the series with forecasts and backcasts.
This idea is similar to the one used in the Xll-AR/MA program, which has
proved useful in reducing revisions.

2.3 The Baxter and King Filter

Baxter and King (1995) propose a moving average band-pass filter to estimate
the business cycle. The filter is a symmetric moving average. That is, for a
series {zt}, the filtered series {~zt} is

K

-k)Z* = 5^ a***-*
k=-K

where a_fc = a^, k = l,...,K. The filter can be written more compactly
using the lag operator L as ~zt = a(L)zt, where o(L) = ^2/k=_K OfcLfc. These
weights are chosen according to some optimality criterion and the band-pass
filter is constructed as the difference between two high-pass filters.3

An advantage of the Baxter and King (BK) filter is that, being a band-
pass filter, it does not pass frequencies higher than a preselected value, for
example, 2?r/6 for quarterly data. Therefore, the BK filter can be applied
to the original data and not necessarily to the seasonally adjusted data.
However, like all moving average filters, the BK filter has the disadvantage
that it cannot be applied at both ends of the data unless one can extend
the series with forecasts and backcasts. This is a serious problem and, in
this context, it is worthwhile to mention that there are autoregressive band-
pass filters, like those of the Butterworth family, that can be as exact as the
moving average filters, while requiring many less parameters and many less
predictions.

3 See Baxter and King (1995) for the graphs of the gain function of their band-pass
filter for different band widths.
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2.4 Ad-Hoc Filtering: Dangers and Limitations

To illustrate the dangers of ad-hoc filtering,4 suppose that the HP filter is
applied to a white noise series with unit variance (expressed, for convenience,
in units of 2?r) sampled quarterly. In this case, the spectrum has as a very
wide peak for x •= TT, and hence the detrended series will behave as a stochastic
component with a period of 2 quarters. Yet, by construction, the detrended
series should be the white noise input.5

Another problem with ad-hoc filtering is the definition of the components.
At first, it may seem that, by defining the component as the output of the
filter (see Prescott (1986)), the issue of defining the component properly is
simplified. This simplification is, however, misleading. This can be seen by
considering an example. Suppose that the HP filter is applied to the last 35
years of quarterly US GNP. Assume we apply the HP filter to the first 18
years of the sample. According to the definition of Prescott, this estimator is
the trend for t — 72. But if one more quarter is observed, the HP filter yields
a different estimator of t = 72. Additional quarters will further change the
estimator, and the HP filter is in fact a filter that implies a very long revision
period. As Maravall (1993) has shown, the estimator fluctuates considerably
and takes nearly 10 years to converge.

The lack of proper models for the components limits in many important ways
the usefulness of ad-hoc filters. First, it makes difficult to detect the cases
in which the filter is not appropriate for the series under study. Moreover,
if such is the case, there is no systematic procedure to overcome the filter
inadequacies. Second, even when appropriate, ad-hoc filtering does not pro-
vide the basis for rigorous inference. Given that the filter yields an estimator

4 Harvey and Jaeger (1993) illustrate with some examples the inadequate use of the
HP filter
5 See Maravall (1993) for examples of misuse of the Xll filter when it is applied to
quarterly series {zt} which follow the airline model

VV4zt = (1 + 0i£)(l + 04L
4)ot,

where {a^} is white noise, V4 = 1 — L4 and the two moving average parameters lie
between —1 and 1.
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of the unobserved component, it would be desirable to know the properties
of the estimator, and, in particular, the underlying estimation errors. Fur-
ther, ad-hoc filters do not provide the basis for obtaining forecasts of the
components, which can also be of interest.

2.5 The Beveridge-Nelson Decomposition

Beveridge and Nelson (1981) have proposed a decomposition of a series {zt}
into a permanent and a transitory component that allows for correlation
between the two components. Supposing that {zt} is an 1(1) series such
that V^t has the Wold decomposition V^t = fy(L)dt, then Zt can always be
expressed as the sum of a permanent and a transitory component, where
the permanent component is given by Vzt = ^(1)^, and the transitory
component is equal to ct = ^*(L)at, where \I/*(L) satisfies (1 — L)\I>*(L)
= *&(L) — ̂ (1). The Beveridge-Nelson decomposition can be seen as an
ingenious decomposition of an 1(1) variable, but it does not properly fit
into the unobserved components framework, since the components are, in
fact, observable. This can be easily seen by rewriting, for example, ~zt as ~zt =
Ír(l)ír(í/)~1x2;í, and hence both components are defined as linear combinations
of the observed series.

A very easy form to obtain the Beveridge-Nelson decomposition is the fol-
lowing. Suppose that the series {zt} follows the ARIMA model (f>(L)Vzt =
0(L)at, where the polynomial (j)(L) has all its roots outside the unit circle,
and obtain the partial fraction expansion

9(L) k 0j(L)
= _ _l_

<j>(L)V V 0(L)'

where k is a constant and #i(L) is a polynomial of degree less than or equal
to that of 0(L) — 1. Then, V^ = kat and 0(L)ct = &i(L)at. Given that at

= [(¡)(L)V/0(L)] Zf, the components can be expressed linearly in terms of the
series {zt} &szt = k [<f)(L)/9(L)} zt and Ct = [V0i(L)/0(L)] zt.

To illustrate, suppose we are interested in computing the cycle of the annual
GDP for the United Kingdom {zt}. Using program TRAMO the following
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model was identified and estimated

Vzt = 0.027 + (1 + 0.34L)at (10)

Then, it is not difficult to check that

1+°-34L- 0 3 4 1 1 + °-34

V ~ + V '

Prom this, it is obtained that ct = [-0.34/(1 + 0.34L)] (Vzt - 0.027). The
gain function of this filter can be seen in Figure 4, from which it is deduced
that the performance of the filter is rather poor. Since this series is finite, in
order to apply the BN filter we need some starting conditions for the recursion
ct = —0.34(ct_i + Zt — zt-i — 0.027). Using Tunnicliffe-Wilson's algorithm like
in Burman (1980), it is obtained that c0 = ~^^(ZQ ~ z-i ~ 0.027). The
two backcasts are obtained by reversing the series and using model (10).

2.6 The Use of Fixed Filters within a Model-Based
Approach

Using the automatic model identification procedure of TRAMO,6 we ob-
tained the following model for the annual US GDP from 1950 to 1995:

Vzt = 0.03 + at (11)

The canonical model-based decomposition given by SEATS for this model is

Zt = pt + ut,

6 TRAMO and SEATS are two programs written in Fortran, developed by Gómez and
Maravall (1997). They fall into the class of the so-called ARIMA-Model-Based methods
for decomposing a time series into its unobserved components (i.e., for extracting
from a time series its different signals). The components considered in SEATS are
the trend, seasonal, cyclical and irregular components. Since the model that SEATS
assumes is that of an integrated linear time series with Gaussian innovations, it is
usually necessary to preadjust the series to be treated with SEATS with the program
TRAMO. TRAMO removes from the series special effects, automatically identifies and
removes several types of outliers, and interpolates missing observations. TRAMO can
also be used as a standalone program for the detailed analysis of time series, since it
performs estimation, forecasting, and interpolation of regression models with missing
observations and ARIMA errors, in the presence of possibly several types of outliers.
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where pt is the trend component, which follows the model Vpt = (1 + L)bt,
and bt and Ut are uncorrelated white noise processes. For this series there
are no peaks in the spectrum other than the big peak at the zero frequency,
which is the trend frequency. The minimum mean squared error estimators
pi and ut of pt and ut verify

zt=Pt + Ut

The gain of the trend filter is presented in Figure 4, together with the gain
function of the HP filter. Notice that the SEATS gain function is well above
that of the HP filter, and is not a good approximation to the gain of the
ideal filter that corresponds to our definition of the trend. According to this
definition, we would obtain a decomposition of the form

Zt = Zt + ZC
t

where ~zt is formed by all components of the series with period greater than
eight years and z% is the business cycle. Note that in this definition the
components can and should be considered as the outcome of certain filters
applied to the series. Specifically, let Hc be the ideal business cycle filter.
Then, z% = HcZt and ~zt = (I — Hc}zt- It can be easily seen by inspecting
Figure 4 that 2$ can be interpreted as a subcomponent of the trend estimator
pt given by the model-based approach. We can argue that the model-based
approach is not able to discriminate between ~Zt and pt — ~Zt without further
a priori information on the part of the user.

How can this a priori information be given to the procedure that should
estimate such subcomponent? The answer is by means of a fixed filter Hn-
This filter should be a trend filter (low-pass filter) such that, if applied to
the component pi, would yield the smoother subcomponent ~zt = Hnpt. In
the case in which the filter Hn is almost completely under the model-based
filter, the filtered series Hnp\ will be practically identical to the series HnZt
obtained by filtering the original series. But if the series is, for example,
white noise, then the model-based filter is zero and Zt is zero as well. This
procedure guarantees in an almost automatic manner that the fixed filter is
correctly applied, since it takes into consideration the characteristics of the
series. For the application, in the next section, we have first checked that it
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is always the case that Hn is well under the model-based filter, so that we
will estimate ~zt as ~zt = Hnzt.

We emphasize that any kind of low-pass filters Hn can be used in the second
step of the proposed procedure. For the empirical application, the following
class Hn, which can be implemented in the program SEATS, will be used.
Consider the following ARIMA model

Wdzt = (1 + 0LK (12)

where V¿Zt = (1 — Ld)zt- The canonical model-based decomposition that
corresponds to this model is Zt — ~Zf— %, where ~zt is the trend component
and nt is another component, orthogonal to ~Zf The trend component follows
the model V2Zt = (l+L)(l+aL)bt and the Wiener-Kolmogorov filter, denoted
Hn, to obtain the minimum mean squared estimator ~Zt is

? - H z - **> (l + L)a(L)S(L)(l + L-*)a(L-i)S(Ir^
zt-Hnzt-^ (l + OQ(l + OL-i) "

where a* = Vor(ot), of = Var(bt), a(L) = 1+aL and S(L) = 1+L+- • •+Ld~1.
The filter Hn is doubly infinite symmetric. It can be shown that

a¡ = (1 + e)2 29 d2 + 2
al 4(l + a¡)2d2 ' (1 + 0)2 6

and

1 - k - (1 - 2k}1/2

a = Tk
For each pair of parameters (6,d) we obtain a trend filter Hn. For each
pair (0,cQ, the gam function of Hn has value 1 at the zero frequency and
decreases monotonically until it reaches the value zero at frequency 27t/d.
After that, it may present some small ripples between the frequencies 2fc7T/d,
fc = l,2,. . . ,[d-l].

In order to use one of these filters Hn in SEATS with yearly data, as shown
in Figure 5, appropriate values for Hn are d = 5 and 9 = —.6. The resulting
filter has less leakage and less compression than the HP filter for A = 10.
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3. An application to the GDP of OECD countries

3.1 Implementing the proposed model-based approach

In order to illustrate the use of the proposed model-based approach, we have
conducted the following experiment. Instead of quarterly data, which are
more limitedly available7, we used annual data for the OECD countries cor-
responding to the period 1960-1994, taken from OECD National Accounts.
Since, as mentioned earlier, the performance of the filters at both ends of
the series can be very poor, the sample was expanded first until 1995 using
the rates of growth of GDP contained in the Economic Outlook. Then, using
the automatic model identification facility of the program TRAMO, models
were obtained and estimated for all countries in the sample and these models
were used to forecast the series of GDP until the year 2005. The procedure
used by the program also handles outliers automatically. The types of out-
liers considered are level shift, additive outliers and transitory changes. In all
cases, we checked for model adequacy and we found that the fit was accept-
able. Instead of using these same models for backcasting, 'we used the rates
of growth of GDP implied in Summers and Heston's PWT 5.6 to backcast
the series until 1950. Therefore, we used a total of 56 observations for each
country to filter the series, although we were only interested in the filtered
series for the period 1955-1995.

The models obtained by TRAMO were passed on to SEATS for signal extrac-
tion. For all countries, we checked that the trend filter obtained by SEATS
using the canonical model-based decomposition was above the fixed filter Hn

of the previous section corresponding to the values d = 5 and 9 = —0.6. Since
this was the case for all countries, we decided to apply the fixed filter Hn di-
rectly to the series zt, instead of applying it to the trend-cycle estimator p¿
obtained by SEATS. We decided not to correct for the outlier effects to fa-
cilitate the comparisons of the results with those obtained applying the HP

7 Quarterly National Accounts does not provide data for all OECD countries, and
for most of them, quarterly GDP is only available from the begining of the seventies.
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filter.

3.2 Comparison between the HP filter and the proposed
procedure

We also applied the HP filter, with a value of A = 10, to the same GDP series
of the previous section, using the same sample period.

In Table I, we present the standard deviation (cr) of the series filtered with
both the HP (A = 10) and SEATS (d = 5,0 = -.6) filters as a measure of
volatility. As can be seen, the estimates obtained with SEATS have a smaller
standard deviation than those obtained with the HP filter in all cases. The
values of <J given by this last filter are in line with the results obtained for
quarterly data, using a value of A = 1600, by, for example, Backus, Kehoe
and Kydland (1993), from 1970 to mid nineties and for a smaller sample of
countries. However, if the value A = 400 is used for the annual US GDP, as
proposed Hodrick and Prescott, a value of a equal to 2.46 is obtained, which
is higher than the typical value reported and confirms some of the problems
pointed out in section 2. The last column of Table 1 shows the R2 obtained
by regressing the cyclical component given by the HP filter upon the one
given by SEATS. As can be seen, the correlation between the two estimates
of the business cycle is always very high, with Canada, Japan, Sweden and
the United Kingdom being the countries with lower correlation.
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Table 1
Cyclical Components of GDP: Some Statistics

Country

Australia
Austria
Belgium
Canada
Denmark
Finland
France
Germany
Greece
Iceland
Ireland
Italy
Japan
Luxembourg
Netherlands
New Zealand
Norway
Portugal
Spain
Sweden
Switzerland
Turkey
UK
USA

HP
a

1.51
1.37
1.34
1.67
1.50
2.58
1.07
1.62
1.83
3.21
1.71
1.56
1.59
2.01
1.63
2.41
1.21
2.07
1.92
1.26
2.06
3.00
1.49
1.59

Two-step
a

1.40
1.25
1.06
1.21
1.19
2.03
0.84
1.34
1.53
2.41
1.43
1.21
1.08
1.76
1.43
1.98
0.92
1.52
1.55
1.02
1.57
2.77
1.19
1.35

B?

0.949
0.945
0.944
0.896
0.933
0.909
0.932
0.941
0.962
0.927
0.946
0.931
0.898
0.947
0.953
0.901
0.905
0.920
0.912
0.896
0.926
0.958
0.900
0.936

Notes: a refers to the stardard deviation of GDP
cyclical components. The third column shows
the n2 of the regression of HP estimates upon
SEATS ones for each country.

3.3 International comovements

To see the effect of the previous filters on the international comovements
for the sample of countries considered, in Table 2 we present the correla-
tion of each cyclical component for each country at time t with the cyclical
component of the United States at times t + k for k = —1,0,1. The re-
sults are similar for both filters and are in line with the evidence reported
by Backus, Kehoe and Kydland (1993), or Baxter and Crucini (1993), for
quarterly data, although the correlations we find are significantly lower for
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Germany and Japan, and higher for the United Kingdom, probably because
the data used by these authors are from 1970 onwards. The cross correla-
tions obtained with the SEATS filter are higher than those obtained with
the HP filter for 16 countries, which amounts to 2/3 of the sample. Compar-
ing both results, differences seem to be important in the case of Denmark,
Germany, Italy, Japan, New Zealand, Spain and Switzerland.

Table 2
International Comovements 1955-95

Correlation in í with cyclical componet of US GDP in t + k
Country

Australia
Austria
Belgium
Canada
Denmark
Finland
France
Germany
Greece
Iceland
Ireland
Italy
Japan
Luxembourg
Netherlands
New Zealand
Norway
Portugal
Spain
Sweden
Switzerland
Turkey
UK

HP filter
fc = -l

-0.04
0.26
0.28
0.46
0.01
0.36
0.43
0.15
0.15
0.22
0.23
0.47
0.18
0.42
0.38
0.06
0.28
0.32
0.37
0.30
0.38

-0.24
0.40

k = 0
0.46
0.14
0.20
0.74
0.46
0.23
0.23
0.34
0.28
0.31
0.30
0.23
0.10
0.29
0.43
0.15
0.44
0.24
0.10
0.09
0.27

-0.11
0.71

fc = l
0.31

-0.13
-0.23
0.13
0.23

-0.20
-0.23
-0.09
0.19
0.26

-0.09
-0.34
-0.25
-0.25
-0.10
-0.14
0.31

-0.19
-0.07
-0.19
-0.30
0.14
0.29

Two-step Procedure
* = -!

-0.14
0.34
0.32
0.35
0.04
0.43
0.39
0.18
0.03
0.04
0.32
0.55
0.30
0.47
0.34
0.20
0.30
0.28
0.43
0.28
0.49

-0.33
0.29

fc = 0
0.39
0.26
0.26
0.68
0.54
0.29
0.28
0.42
0.28
0.17
0.38
0.28
0.28
0.37
0.41
0.23
0.31
0.37
0.04

-0.02
0.41

-0.22
0.73

k = l
0.26

-0.04
-0.26
-0.08
0.14

-0.22
-0.21
-0.08
0.25
0.28

-0.10
-0.42
-0.19
-0.29
-0.18
-0.25
0.03

-0.07
-0.17
-0.37
-0.30
0.07
0.23

3.4 Outliers

As mentioned earlier, the preceding comparison has been done without taking
into consideration the effects of the possible outliers in the data, since ad-
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hoc filtering does not allow for any treatment of outliers. However, it is
possible that for some countries there exist are some priors regarding possible
transitory or permanent changes in their GDP, but ad-hoc filtering does not
control for this possibility.

To show how the effects of outliers can be important, we present an example
based in one well known particular experience. In 1959 Spain became a
member of the IMF, which provided financial aid. This was done after Spain
had taken a set of measures aimed at achieving fiscal and external equilibrium
and at decreasing inflation. These measures had a positive long-run effects
upon the GDP, but, in the short-run, the reduction in aggregate demand
caused an important economic recession, which is now commonly interpreted
as having had only transitory effects.

The GDP trend for the Spanish economy, for the period 1955-1965, estimated
with the HP filter, can be seen in Figure 6. As already mentioned, the HP
filter has a very long revision period. This is the reason why the trend level
shows a lower rate of growth before 1960 and a higher one after this year.
The series filtered with the SEATS filter, applied to the series corrected for
the effect of the outlier, can also be seen in Figure 6. The difference between
both estimates reaches 5 per cent of the GDP in 1960. 'Note that the effect
of the outlier can be observed in the series filtered with the HP filter before
the effect took place and that, because the outlier is transitory, it is assigned
to the cyclical component estimated with the SEATS filter.
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4. Conclusions

This paper has analyzed the properties of three well-known filtering meth-
ods to decompose economic variables into trend and cyclical components,
following the engineering tradition of Butterworth filtering. It also compares
the outcome of these methods with the ideal filter which corresponds to the
standard and well accepted definition of the business cycle.

The HP filter has been shown to be a symmetrized Butterworth filter. This
fact is important because it can be used to choose the smoothing parameter
in terms of the frequency where the gain function is equal to 1/2. The value
of A = 1600 proposed by Hodrick and Prescott (1997) for quarterly data is
then justified. However, it suggests a value of A = 10 for annual data, rather
smaller than those frequently found in the empirical literature. Also, the use
of forecasts and backcasts is recommended to improve the performance of
the HP filter at both ends of the series.

In general, the HP filter performs reasonably well when applied to nonsta-
tionary seasonally adjusted quarterly data, corrected for outlier effects. This
indicates that when all or any one of these characteristics do not apply, the
use of the HP filter can be problematic. With annual data, the HP filter is
a poorer approximation to the ideal filter, even using the smaller smoothing
parameter A = 10.

Compared with the HP filter, the BK procedure gives a better approximation
to the ideal filter, but at the cost of more predictions at both ends of the
sample. An additional advantage of the BK filter is that it can be applied
to the original data, without using the controversial seasonally adjustment
methods.

Ad-hoc filtering methods, like the HP and BK filters, face some important
limitations. Firstly, there is no explicit definition for the trend and cyclical
components. Secondly, it is impossible to make statistical inference, which is
relevant in applications of ad-hoc filtering. Furthermore, these methods do
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not consider specific treatment of outlier effects and, finally, ad-hoc filtering
is an inappropriate method when, for example, applied to a stationary series.

A new method to obtain the BN decomposition has been proposed, which
considerably simplifies the original procedure. Also, a recursive algorithm has
been presented to obtain the BN estimates. With respect to the performance
of the BN decomposition, it seems that the results do not improve those of
the alternative methods.

To circumvent some of the problems associated with ad-hoc filtering, this
paper proposes a new two-step method to obtain the trend and cyclical com-
ponents. In the first step, a model-based procedure is used to obtain the
trend-cycle signal. Then, in the second step, a fixed filter is applied to de-
compose this signal into the trend and cyclical components.

This procedure has several advantages. First, the trend-cycle component ob-
tained in the first step depends on the characteristics of the series. Second,
the series is corrected for outlier and other deterministic effects. Third, the
fixed filter for annual data used in the second step approximates the gain of
the ideal filter better than the HP filter and, finally, it requires fewer para-
meters than the BK filter. These improvements can be of importance when
the statistics associated with Real Business Cycle Literature are computed
to evaluate their performance or when the HP filter or other ad-hoc filtering
methods are used to estimate the trend and cyclical components of economic
time series.

To illustrate this point, the performance of the HP filter has been compared
with that of the proposed procedure in an empirical application to estimate
the business cycle of the GDP of OECD economies. To make the comparison
possible, outlier treatment was not used. The results show that the cyclical
components obtained with the two-step procedure present a smaller stan-
dard deviation in all cases. In addition, if transitory outliers are taken into
account, the results obtained with the two-step procedure are significantly
better.

All these results emphasize the importance of a more careful application of
filtering in empirical literature and suggest avoiding one-fit-for-all solutions.
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Figure 1: Gain of the ideal filter (yearly data).
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Figure 3: Gain of the Beveridge-Nelson niter
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Figure 4: Gaiu of the trend of the HP and SEATS filters.
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Figure 5: Gain of the HP (A = 10) and the SEATS niters (d=5,9- -0.6)
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