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Abstract 

This article proposes a new multivariate method to construct business cycle indicators. 
The method is based on a decomposition into trend–cycle and irregular. To derive the 
cycle, a multivariate band–pass filter is applied to the estimated trend–cycle. The whole 
procedure is fully model–based. Using a set of monthly and quarterly US time series, two 
monthly business cycle indicators are obtained for the US. They are represented by the 
smoothed cycles of real GDP and the industrial production index. Both indicators are 
able to reproduce previous recessions very well. Series contributing to the construction 
of both indicators are allowed to be leading, lagging or coincident relative to the business 
cycle. Their behavior is assessed by means of the phase angle and the mean phase angle 
after cycle estimation. The proposed multivariate method can serve as an attractive tool 
for policy making, in particular due to its good forecasting performance and quite simple 
setting. The model ensures reliable realtime forecasts even though it does not involve 
elaborate mechanisms that account for, e.g., changes in volatility. 

JEL Classification: E32, E37, C18, C32 

Keywords: Business cycle, multivariate structural time series model, univariate band–pass 
filter, forecasts, phase angle 



1 Introduction 

Economic policy is a subject which often sparks off an active public debate. For example, 

policy makers pursuing stabilization policy are expected to take appropriate actions to 

stimulate the economy if it is on the brink of a crisis, or to prevent the overheating of the 

economy if an expansion is likely to take place. However, such measures are risky since 

wrong decisions entail high costs for the society. It is therefore all the more important to 

have reliable information in the decision making process. Moreover, the decisions must 

be often made early enough and thus under uncertainty about the future state of the 

economy. Information available at high frequencies can thus prove helpful in revealing 

the stage of the business cycle. The aim of this article is to develop a methodology that 

can both provide reliable information on the course of the economy and reduce the lag in 

the recognition of its future state. 

To identify the course of the economy on the basis of macroeconomic data, a clear 

signal supposed to represent the business cycle has to be extracted. For that purpose, it 

is necessary to separate out long–term movements and noisy elements from the data. The 

question as to how to accomplish this constitutes the central question of business cycle 

analysis and has been investigated since the seminal work by Burns and Mitchell (1946). 

They for the first time gave a more narrow definition of business cycles as fluctuations in 

the economic activity that last between 1.5 and 8 years. The following research attempted 

to construct business cycle indicators characterized by these periodicities. Some studies 

focus on univariate approaches, like the filters proposed by Hodrick and Prescott (1997) 

and Baxter and King (1999) that have become very popular mostly because of their 

relatively simple implementation. 

Among the univariate approaches, an alternative to these ad hoc filtering methods are 

the unobserved components models that take the stochastic properties of the data into 

account. As regards this signal extraction approach, two tendencies have emerged in the 

literature. One direction corresponds to the structural time series models proposed by, 

e.g., Harvey (1989) or their generalized version allowing for smoother cycles (see Harvey 

and Trimbur, 2003). The other direction is determined by the ARIMA–model–based 

approach (see, e.g., Box et al., 1978) combined with the canonical decomposition (see 

Cleveland and Tiao, 1976). 
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Since in the univariate approach only one series, typically real GDP or industrial
 

production, can serve as a basis for the construction of a business cycle indicator, the 

informational content of other macroeconomic time series cannot be exploited. In contrast, 

the multivariate framework takes the contribution of different time series into account. 

This advantage of a multivariate setting has been recognized by, e.g., Forni et al. (2000) 

who develop a Euro area business cycle indicator in a generalized dynamic–factor model 

using a large panel of macroeconomic indicators. The indicator of Valle e Azevedo et al. 

(2006) for the Euro area is designed with a structural model including a common cycle, 

and extracted using a moderate set of series. Creal et al. (2010) extend their approach 

by taking into account time–varying volatility and adopt this method for the US. 

In this article, we propose another multivariate method which is also based on a 

structural time series model. However, because of the well–known difficulties in modeling 

cycles directly, a model consisting only on trend plus irregular is initially specified. In this 

model, the trend is assumed to capture transitory movements and to have a common slope. 

For this reason, it is more appropriately referred to as a trend–cycle. After estimating the 

trend–cycle, we apply to it a multivariate band–pass filter to estimate the cycle following 

the methodology proposed by Gómez (2001). In fact, the filter is designed for univariate 

series, but then it is extended to multivariate series using diagonal matrices. The whole 

procedure is fully model–based and is applied to the same set of 11 monthly and quarterly 

US time series as in Creal et al. (2010). The extracted cycles of real GDP and the industrial 

production index can act as two alternative monthly business cycle indicators. 

The proposed approach exhibits very appealing properties. From the modeling point 

of view, it provides indicators of the economic activity which conform to the idea of the 

business cycle featuring periodicities between 1.5 and 8 years. Hence, one can be sure 

that these indicators are not contaminated with higher– or lower–frequency movements. 

In addition, the model is flexible since only a few restrictions are imposed, and yet quite 

simple in that it does not involve special constructs, like time–variant parameters, to cap­

ture specific behavior of the series components. The complexity of the proposed method 

is kept at a rather low level also due to the fact that a dataset with small or moderate 

number of series is sufficient in the implementation of the procedure. Moreover, the algo­

rithms used for this method are able to deal with data recorded at different frequencies, 
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and can handle missing values straightforwardly.
 

As regards the policy relevance of the methodology, it is shown that not only previ­

ous recessions can be spotted by the resulting business cycle indicators, but also future 

recessions can be very well predicted. As a reliable forecasting framework, this model 

can perform better than univariate methods and some elaborate multivariate models. 

Further, the indicator represented by the real GDP cycle and its predictions are given 

on a monthly basis even though real GDP itself is recorded quarterly. This leads to a 

more precise picture on the economic situation and makes it possible to detect changes in 

the economic course early. To summarize, with its quite simple setup, good forecasting 

performance and the ability to generate realtime forecasts not distorted by, e.g., highly 

volatile movements, this method proves to be a well–suited tool for policy makers. 

As the information stemming from different time series helps to build the business 

cycle indicators, it may be of interest to know how these series are related to the business 

cycle. In contrast to the idea by Stock and Watson (1989), they are not constrained to be 

coincident indicators only. The behavior of the included series is examined by drawing on 

the concepts of the phase angle and the mean phase angle. These spectral measures allow 

for classifying the series as leading, lagging or coincident indicators as well as identifying 

procyclical or countercyclical patterns. 

The remainder of the article is organized as follows. In Section 2, we present the 

multivariate monthly model. The model is then applied to the US data described in 

Section 3.1. The resulting business cycle indicators and the behavior of other indicators 

with respect to the business cycle are analyzed in Section 3.2. Section 3.3 focusses on the 

forecasting performance of the proposed approach. Section 4 concludes. 

Multivariate Monthly Model 

Given a multivariate monthly time series {yt}, t = 1, . . . , n with yt = (y1t, . . . , ykt) ′ , the 

decomposition of yt is based on a trend plus noise model, i.e. 

yt = µt + ϵt, (1) 

where Var(ϵt) = Dϵ is a diagonal matrix. In the presence of a cycle, µt is not seen as a 

smooth trend but rather as a component containing cyclical movements too. Therefore, 
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it will hereafter be referred to as the trend–cycle.
 

Alternatively, it would be possible to add a cycle component to model (1) to explicitly 

model cyclical movements. However, it is well known that cycles are not easy to model 

and that most of the time one ends up fixing some parameters in the cycle model to obtain 

sensible results (see, e.g., Valle e Azevedo et al., 2006). The difficulty of modeling cycles 

is also apparent in the univariate case when one starts with an ARIMA model fitted to 

the series and the models for the components are specified according to the canonical 

decomposition (see, e.g., Cleveland and Tiao, 1976). In this case, a model for the cycle 

cannot usually be found using traditional tools of ARIMA modeling, such as graphs or 

correlograms. 

The approach in this paper consists of applying a fixed band–pass filter to the trend– 

cycle component, µt in model (1), following the methodology proposed by Gómez (2001). 

The filter is designed to extract the business cycle fluctuations that correspond to the 

periods between 1.5 and 8 years. The procedure is fully model–based and will be described 

in the following subsections. 

2.1 Model for the Trend–Cycle Component 

The trend–cycle component µt follows the model 

µt+1 = µt + Kβt + ζt 
(2) 

βt+1 = βt + ηt, 

where βt denotes the slope of µt, and Var(ζt) = Dζ and Var(ηt) = Dη are diagonal 

matrices. Moreover, by assuming K = [1, b21, ..., bK1], ∇µt+1 = µt+1 − µt is allowed to be 

driven by one common slope. This common slope acts as a common factor in a common 

factor model. The rationale for imposing a common slope in model (2) is based on the 

assumption that the different elements of the series {yt} have the same or a similar cyclical 

behavior. It is usually accepted that the growth rate of a series is interpreted as the cycle 

or is strongly related to it. For series in logs, the growth rate is given by the first difference 

of the series, i.e. 

∇yt = Kβt−1 + ηt−1 + ∇ϵt 

Since ηt−1 +∇ϵt is stationary, the evolution of the cycle is strongly affected by the common 

slope, βt. 
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To estimate the trend–cycle µt, model (1) along with the trend–cycle specification (2) 

can be first put into the state space form as described in Appendix A.1. Then, the Kalman 

filter is applied to this state space form to estimate the the unknown parameters of the 

state space model. Finally, the Kalman smoother yields the estimate of µt. Details on 

these filtering and smoothing methodologies are given in Appendix B. 

The estimated trend–cycle is used in the second step for cycle estimation. The whole 

procedure is model–based, meaning that, first, the model for the trend–cycle serves as 

a basis to derive the models for the trend and the cycle. Second, the parameters of the 

trend–cycle model estimated in the first step are used in the estimation of the cycle. As 

will be seen in the next subsection, we draw on the reduced–form model of the trend–cycle 

in the derivation of the models for the trend and cycle components. A starting point to 

arrive at the reduced–form is the following equation derived from model (2): 

∇2 µt+1 = Kηt−1 + ∇ζt 

Taking into account that for any square matrix M , its square root is defined as any matrix 
1/2 η 1/2 ζM1/2 satisfying M1/2M1/2 ′ = M , we let ηt = Dη ut and ζt = Dζ ut . Then, the previous 

equation can be rewritten as 

∇2 µt = Kηt−2 + (ζt−1 − ζt−2) 

η 1/2 ζ 1/2 ζ = KD1/2 u u − D uη t−1 + Dζ t ζ t−1, 

′ η ′ ζ ′ η ′ where Var([u ζt , u t ] 
′ ) = I. Thus, by defining vt = [ut , u t ] 

′ , the following reduced–form 

model for µt can be obtained: 

∇2 µt = C0vt + C1vt−1 
(3) 

= C(B)vt, 

where B is the backshift operator such that Bvt = vt−1, and C(B) = C0 +C1B is a matrix 

polynomial in B with [ ] [ ]
1/2 1/2 1/2C0 = D 0 , = −Dζ KD (4)
ζ C1 η 

2.2 Cycle Estimation 

In order to extract the cycle, a fixed band–pass filter is applied to the estimated trend– 

cycle component, µt. The filter is in this article referred to as the multivariate filter but 
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its use amounts to the application of the same univariate filter to each individual trend– 

cycle component, µlt, l = 1, ...k. We design a two–sided version of a univariate band–pass 

Butterworth filter based on the tangent function using the specification parameters δ1, 

δ2, xp1, xp2, xs1 and xs2 (see Gómez, 2001). The values of these parameters determine the 

shape of the gain function of the filter, G(x), where x denotes the angular frequency. To 

be more specific, it holds that 1 − δ1 < G(x) ≤ 1 for x ∈ [xp1, xp2] and 0 ≤ G(x) < δ2 for 

x ∈ [0, xs1] and x ∈ [xs2, π]. 

It is possible and convenient to first design a low–pass filter and then, by means of a 

transformation, to derive from it its band–pass version (see Oppenheim and Schafer, 1989, 

pp. 430–434). While designing the low–pass filter, we let xp = xp2 −xp1 and xs = xs2 −xp1 

so that the gain function of the low–pass filter, Glp(x), satisfies 1 − δ1 < Glp(x) ≤ 1 for 

x ∈ [0, xp] and 0 ≤ Glp(x) < δ2 for x ∈ [xs, π]. For such a choice of the parameters 

xp and xs, the appropriate transformation from a low–pass to a band–pass filter is z = 

−s(s − α)/(1 − αs), where α = cos((xp2 + xp1)/2)/ cos((xp2 − xp1)/2) and −1 < α < 1. 

It is shown in Gómez (2001) that the band–pass filters obtained from Butterworth 

filters based on the tangent function admit a model–based interpretation. According to 

this interpretation, the considered band–pass filter is the Wiener–Kolmogorov filter that 

estimates the signal in the signal plus noise model 

zt = st + nt, (5) 

where the signal, st, follows the model 

(1 − 2αB + B2)d st = (1 − B2)dbt (6) 

The parameters d, α and the quotient of the standard deviations of nt and bt, λ = σn/σb, 

depend on the specification parameters δ1, δ2, xp, and xs. 1 The reduced–form model for 

zt in (5) is 

(1 − 2αB + B2)d zt = θz(B)at, 

1The parameters d and A can be computed using the low–pass version of the filter as explained in 

Gómez (2001, p. 372). It should be thereby taken into account that A = 1/ tand(xc/2), where xc is a 

frequency such that Glp(xc) = 1/2. For the filter used in this article, the values for the parameters in (6) 

are d = 3, a = 0.9921 and A = 437.19. 
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where θz(B) is of degree 2d. Letting δz(B) = (1 − 2αB + B2)d, the Wiener–Kolmogorov 

filters to estimate st and nt in (5) are 

σb 
2 (1 − B2)d(1 − F 2)d σn 

2 δz(B)δz(F )
hs = , hn = ,

σa 
2 θz(B)θz(F ) σa 

2 θz(B)θz(F )

respectively, where F is the forward operator such that Fzt = zt+1, σb 
2 = Var(bt), σn 

2 = 

Var(nt) and σa 
2 = Var(at).2 

The previous considerations allow for the integration of the fixed band–pass filter 

described earlier into a multivariate model–based approach. To show this, we first consider 

the pseudo covariance generating function (CGF) of µt. Denoted by fµ, the CGF of µt 

can be decomposed as follows: 

fµ = hsfµ + (1 − hs)fµ 

= fc + fp, 

where fc = hsfµ and fp = (1 − hs)fµ. This decomposition defines the decomposition of µt 

into two orthogonal unobserved components, ct and pt, with CGFs fc and fp, respectively. 

Since the Wiener–Kolmogorov filter to estimate ct in the model µt = ct + pt is the band– 

pass filter hs = fc/fµ, the subcomponent ct is considered as the cycle, whereas the other 

subcomponent, pt, represents the trend. 

The models for ct and pt are obtained from their CGFs. Using the reduced–form model 

for µt in eq. (3), the CGF of ct can be written as 

fc = hsfµ 

1 ′ 1 σb 
2 (1 − B2)d(1 − F 2)d 

= (C0 + C1B)(C0 + C1
′ F )

(1 − B)2 (1 − F )2 σa 
2 θz(B)θz(F ) 

(1 − B)d−2(1 + B)d σ2 (1 − F )d−2(1 + F )d 
b ′ ′ = (C0 + C1B) (C0 + C F ) ,

σ2 1θz(B) a θz(F ) 

where C0 and C1 are as in (4). From this, it follows that the model for ct is 

θz(B)ct = (1 − B)d−2(1 + B)dC(B)vt, (7) 

2The derivation of the polynomial ez(B) and the variance θ2 is provided by Gómez (2001, p. 371). a 

Without loss of generality, we set for the filter used in this article θ2 = 1. Then, for this filter θn = b 

437.19 and θa = 568.58. 
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where C(B) = (σb/σa)C(B) and Var(vt) = I. In a similar way, it can be shown that the 

model for pt is 

(1 − B)2θz(B)pt = δz(B)C⎥(B)⎥vt, (8) 

where C⎥(B) = (σn/σa)C(B) and Var(v⎥t) = I. 

Knowing the models for ct and pt, the cycle can be estimated using the state space 

framework. The state space model is set up by taking into account decomposition (1) 

and the decomposition of µt into ct and pt. Details on this state space representation are 

provided in Appendix A.2. The matrices of this state space form contain the parameters 

of the trend–cycle mode as well as the parameters of the band–pass filter. The former 

have been estimated as described in the previous subsection whereas the values of the 

filter parameters have been selected so as to extract the waves corresponding to business 

cycle frequencies. Therefore, the matrices of the state state representation of the total 

model do not have to be estimated. The covariance square root Kalman smoother applied 

to this state space model yields the estimated cycle. 

3 Empirical Results 

3.1 Data With Mixed Frequencies and Missing Values 

In this section, the proposed methodology is used to construct US business cycle indicators 

on the basis of a set of US macroeconomic time series. To assess the performance of this 

method, the results in Creal et al. (2010) are considered as a benchmark. For notational 

convenience, we will use the acronym CKZ when referring to this study. To make the 

comparison as reliable as possible, the same dataset consisting of 11 seasonally adjusted 

time series from 1953.M4 to 2007.M9 is used (for details see Creal et al., 2010, p. 702). The 

monthly series are: the industrial production index (IPI), the unemployment rate, average 

weekly working hours in manufacturing, and two series from the retail sales category. One 

of them, retail sales, is discontinued in 2001.M4 whereas the other one, retail sales and 

food services, is observed between 1991.M1 and 2007.M9. The remaining series, i.e. real 

GDP, consumer price index inflation, consumption, investment, productivity of the non– 

farm business sector and hours of the non–farm business sector are available on a quarterly 

basis. All series except for the unemployment rate and inflation are in logs and multiplied 

8
 



by 100.
 

An important property of the dataset is the presence of missing values. This, however, 

poses no problem because the Kalman filter can easily handle missing observations. An­

other feature of the data is the different observation frequency. Even though the models 

presented in the previous section as well as their corresponding state space forms are 

formulated for monthly data, quarterly data can be accommodated in this framework in 

a straightforward manner. 

It is to be noted that different time aggregation patterns apply depending on whether 

the variables are stocks, time–averaged stocks or flows. It would be possible to account for 

these different types of variables by incorporating the so–called cumulator variables (see 

Harvey, 1989, pp. 306–239). They are defined in terms of variables not being transformed 

so that the correct use of the cumulator variables in the case of series in logs would imply 

non–linear state space models. If, instead, the definitions of the cumulator variables are 

assumed to hold also for series in logs as in Mariano and Murasawa (2003), this can lead to 

inaccuracies in the components estimates. Due to these problems, we follow an alternative 

approach. We disregard the different time aggregation schemes and treat quarterly data 

as monthly data with two missing observations added between two consecutive quarterly 

observations. In this way, non–linearities and larger model dimensions caused by the 

cumulator variables can be avoided. 

3.2 Business Cycle Indicators 

Figure 1 depicts the business cycle indicators, the IPI and real GDP cycles, estimated in 

the multivariate framework.3 It is apparent that the recessions implied by both cycles 

are in line with the recessions dated by NBER. The IPI cycle is undoubtedly much more 

volatile than the GDP cycle. Whereas the standard deviation of the GDP cycle is equal to 

1.59, the corresponding value for the IPI case is 3.31, more than twice as high. However, 

both cycles show a very similar pattern. This observation can be also confirmed by their 

contemporary correlation of 0.945. The high degree of synchronization let them act as 

alternative recession indicators. The most remarkable deviation in values of each cycle 

3All computations have been performed with Matlab R2012b (64–bit) using the SSMMatlab toolbox 

by Gómez (2012) and procedures written by Vı́ctor Gómez. 
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within a single recession can be observed between 1973 and 1975. The strong fall from
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high positive to high negative values suggests the most severe downturn in the analyzed 

time span. A further, very sharp decline in the economic activity occurs in the early 1980s 

and is a result of two recessions separated by a peak in 1981, as is evident from Figure 1. 

Beside the dips classified by NBER as recessions, both cycles exhibit three smaller dips: 

the first one in the late 1960s, the second one between 1984 and 1987 and the third one 

in the mid–1990s. The IPI and GDP cycles are not only able to reproduce the previous 

US history of downturns, as is made clear by Figure 1, but they also nearly coincide with 

the respective cycles extracted by Creal et al. (2010). 

Figure 1: Cycles of the industrial production index (IPI) and real GDP as the business cycle 

indicators 

Note: NBER recession dates are represented by the vertical bands. 

Given the business cycle indicator, the remaining series can be classified as leading, 

lagging or coincident indices depending on how they are shifted relative to the business 

cycle. If the cycle is explicitly modeled in a multivariate structural model, a possible 

way to identify the lead–lag pattern is to directly incorporate phase shifts into the model 

with a common cycle according to the approach of Rünstler (2004) that has been applied 

in Creal et al. (2010) and Valle e Azevedo et al. (2006). This, however, increases the 
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number of parameters to be estimated. In order to keep the model tractable, Valle e 

Azevedo et al. (2006) fixed the frequency of the common cycle to a specific value so that 

the inclusion of the shift parameter necessitates additional restrictions. The Bayesian 

approach for parameter estimation adopted by Creal et al. (2010) per se involves choosing 

prior distributions for the parameters. The classification procedure we follow in this 

article has the advantage that it does not increase the model complexity nor does it 

require certain assumptions. It relies on the concept of phase angle. This measure is 

well suited to establish the lead–lag relation of two time series as well as the direction 

(positive or negative) of their relationship. By means of the phase angle, the behavior of 

the particular cycle with respect to the business cycle can be examined. 

If the value of the phase angle at the angular frequency ω, θ(ω), lies between 0 and π, 

the particular series is said to lag the business cycle at ω. The opposite case is implied 

by −π < θ(ω) < 0. The particular series is defined as coincident at ω, if θ(ω) equals 

zero. Moreover, values of the phase angle ranging between (−π/2, π/2) point to a positive 

relation between the particular cycle and the business cycle (procyclical behavior/in–phase 

movement), whereas the values of θ(ω) in the interval [−π, −π/2) or (π/2, π] indicate a 

negative relationship (countercyclical behavior/anti–phase movement) between them.4 In 

the CKZ model, phase angle values are constrained to lie between −π/2 and π/2 due to 

identifiability issues so that all series are implicitly assumed to be procyclical. However, 

this cannot be a plausible assumption for the unemployment rate. 

Judgement of the overall behavior can be made based on the phase angle value with 

respect to a reference frequency. In the case of the CKZ model, it is the frequency of the 

common cycle. It corresponds to the largest mass of the spectrum of the common cycle 

and is thus the same for all series under consideration. In contrast, we allow the cycles 

to have different spectral densities. The natural counterpart of the reference frequency 

in the CKZ model therefore seems to be the frequency associated with the strongest 

relationship between the business cycle and the particular cycle. The strength of their 

frequency–by–frequency relationship is here measured using the concept of coherence. 

Though the lead–lag classification approach resting on the strongest coherence creates a 

4Note that the range of the phase angle is constrained to the interval [−α, −α]. The rationale for 

this common practice and a comprehensive discussion on the values of the phase angle are provided by 

Marczak and Beissinger (2012). 

11
 



link to the CKZ phase shift modeling, it can disregard possible countervailing patterns 

in the business cycle frequency interval. This problem becomes severe, especially if the 

spectrum or, in this case, the coherence displays more than one peak and contrasting 

patterns can be identified among some of them. To avoid this potential problem, it 

may be useful to analyze the overall behavior of the particular series by evaluating the 

mean phase angle in the whole business cycle frequency interval [2π/96, 2π/18]. For that 

purpose, we employ the concept of a mean appropriate for data measured on the angular 

scale (see Fisher and Lewis, 1983). 

The results of the lead–lag analysis pertaining to the IPI cycle as a business cycle indi­

cator can be found in Table 1. In addition to the single estimates of the phase angle based 

on the reference frequency, θ(ωh), and the mean phase angles θ̄, the respective confidence 

intervals are reported.5 It is evident that manufacturing working hours, productivity and 

investment are leading the business cycle at the 5% significance level. According to the 

statistically significant negative value of the mean phase angle, consumption can be also 

classified as a leading indicator. Similar observation can be made for both series from 

the retail sales category. All these results confirm the CKZ findings. One of the few 

divergences relative to the CKZ results pertains to the unemployment rate. From the 

¯significance of the negative values of θ(ωh) and θ, it can be inferred that this series is 

leading the business cycle. However, the values of θ(ωh) and θ̄ are both very close to π, a 

value for which the unemployment rate could be characterized as leading or as lagging the 

business cycle. In fact, it can be observed that the unemployment rate increases before 

the business cycle reaches its peak, but it also rises after a trough in the economic activity. 

In the real GDP case, a coincident behavior cannot be ruled out whereas the CKZ findings 

suggest a leading behavior of real GDP instead. The remaining series, inflation and, as 

opposed to the CKZ results, hours in the non–farm business are lagging the business cycle 

at the 5% significance level. 

As regards the movements with or against the business cycle, almost all indicators 

exhibit a statistically significant procyclical pattern. Only the unemployment rate is 

5The confidence bounds for the estimates of the phase angle and the mean phase angles have been 

constructed as described in Koopmans (1974, pp. 285–287) and Fisher and Lewis (1983), respectively. 

All computations for the lead–lag analysis have been performed with Matlab R2012b (64–bit) using the 

Spectran toolbox by Marczak and Gómez (2012). 
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Table 1: Leading, lagging and coincident indicators relative to the IPI cyclea) 

IPI and 
Period λh 

in years b) 
e(πh) 

95% Conf. 

interval for e(πh) 
¯ e c) 

95% Conf. 

interval for ¯ e 

Unemployment 3.41 −0.920 −0.975 −0.865 −0.929 −0.942 −0.916 

Manufacturing 3.63 −0.170 −0.237 −0.103 −0.157 −0.173 −0.140 

Inflation 5.45 0.329 0.243 0.415 0.166 0.108 0.224 

Retail 4.54 −0.070 −0.180 0.040 −0.086 −0.131 −0.041 

Retail/food 3.41 −0.050 −0.242 0.142 −0.061 −0.089 −0.033 

Productivity 4.19 −0.388 −0.508 −0.267 −0.241 −0.287 −0.195 

Real GDP 7.79 −0.030 −0.076 0.016 0.007 −0.014 0.028 

Hours 3.03 0.096 0.050 0.141 0.111 0.096 0.126 

Consumption 4.54 0.006 −0.109 0.121 −0.146 −0.213 −0.079 

Investment 7.79 −0.151 −0.210 −0.092 −0.002 −0.028 0.025 

a) Angular measures are expressed in terms of shares of α.
 
b) λh
 corresponds to the frequency πh at which the coherence between the business cycle indicator and 

the respective series attains the highest value. 
c) ¯ e denotes the mean phase angle computed in the frequency interval [2α/96, 2α/18]. 

statistically significant countercyclical. It is worth noting that the similar cyclical behavior 

for both series, retail sales and retail sales with food services, is not a consequence of any 

restrictions. In the CKZ model, on the other hand, the same phase shift for these both 

series is imposed at the outset. 

Analogously to Table 1 related to the IPI cycle, Table 2 summarizes the results related 

to the GDP cycle as a business cycle indicator. It can be noticed that they do not 

qualitatively differ from the ones corresponding to the IPI cycle. Hence, both business 

cycle indicators can in this case serve as equivalent reference measures. 

3.3 Forecasting 

3.3.1 Forecasts of the Recessions 

Apart from providing stylized facts about the past and the current state of the economy, 

a method for extracting a business cycle indicator should perform well with respect to 

forecasting. Accurate forecasts of the economic activity in the near future are of a vital 
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Table 2: Leading, lagging and coincident indicators relative to the GDP cyclea) 

Real GDP and 
Period λh 

in years b) 
e(πh) 

95% Conf. 

interval for e(πh) 
¯ e c) 

95% Conf. 

interval for ¯ e 

Unemployment 4.54 −0.930 −0.986 −0.874 −0.931 −0.947 −0.915 

Manufacturing 6.81 −0.180 −0.255 −0.105 −0.151 −0.167 −0.135 

Inflation 6.06 0.308 0.191 0.425 0.241 0.197 0.286 

Retail 2.27 −0.121 −0.205 −0.036 −0.080 −0.108 −0.052 

Retail/food 1.56 −0.222 −0.438 −0.006 −0.054 −0.084 −0.025 

Productivity 3.63 −0.293 −0.384 −0.201 −0.217 −0.249 −0.186 

IPI 7.79 0.030 −0.016 0.076 −0.007 −0.028 0.014 

Hours 3.41 0.131 0.083 0.178 0.110 0.098 0.123 

Consumption 4.54 −0.009 −0.095 0.077 −0.066 −0.105 −0.028 

Investment 5.45 −0.101 −0.128 −0.075 −0.010 −0.030 0.011 

a) Angular measures are expressed in terms of shares of α.
 
b) λh
 corresponds to the frequency πh at which the coherence between the business cycle indicator and 

the respective series attains the highest value. 
c) ¯ e denotes the mean phase angle computed in the frequency interval [2α/96, 2α/18]. 

importance for economic policy. What is more, the timeliness of the forecasts also plays 

an essential role in the decision making process, as the information at a higher frequency, 

e.g. on a monthly basis, gives a more detailed picture on the future economic situation. 

This aspect has become a motivation for the recently growing literature on the so–called 

nowcasting dealing with real–time data (see, e.g., Giannone et al., 2008; Bańbura et al., 

2012). From the computational point of view, a simple model is advantageous over an 

elaborate one since it is easier to understand, implement and adjust, and it possibly 

requires less restrictions. In this section, we show that the multivariate method proposed 

in this article embodies all these features of a good forecasting model as it is able to yield 

good realtime predictions in a relatively simple modeling framework. 

To examine the performance of the presented approach, we first compute one–year 

forecasts of the IPI and GDP cycle based on the whole sample to check whether the 

forecasts can reproduce the last recession starting in 2007.M12. Further, the model is 

estimated with two shorter samples, until 2000.M12 and 1990.M4, respectively. In both 

cases we also calculate one–year forecasts for both business cycle indicators. In this way, 
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the robustness of this methodology shall be investigated. Figure 2 depicts the smoothed 

IPI and GDP cycle estimates along with the respective forecasts in three intervals. The 

results make clear that the proposed method can predict the last three recessions very 

well. 
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(c) IPI: Forecast interval 1990.M5–1991.M4 (f) GDP: Forecast interval 1990.M5–1991.M4 

Figure 2: Smoothed cycle estimates and one–year forecasts for three time intervals 

Notes: NBER recession dates are represented by the vertical bands. 

3.3.2 Comparison with the Model with a Structural Volatility Break 

Since the focus of this article lies on developing a reliable, albeit simple, model for the 

cycle extraction and forecasting, the model presented in Section 2 cannot explicitly take 

into account any possible structural changes present in the data. Indeed, initiated by 

the studies of Kim and Nelson (1999) and McConnell and Pérez-Quirós (2000), the recent 

literature provides an evidence of a substantial reduction in the volatility of many macroe­
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conomic time series in the US. There is no consensus whether the moderation has occurred 

in form of a break, as suggested by Stock and Watson (2002) (or maybe multiple breaks 

discussed by Sensier and van Dijk, 2004), or rather a gradual change in the volatility, as 

advocated by Blanchard and Simon (2001). Even though in this part of the study we try 

to address the issue of the volatility decline, we do not aim to contribute to the literature 

on the Great Moderation. We rather intend to find out whether accounting for this effect 

influences the forecast performance. For this reason, a single (one–time) volatility break 

is considered. we rely on the break time point in 1984.M1 initially detected for output 

growth by Kim and Nelson (1999) and McConnell and Pérez-Quirós (2000). This single 

volatility break is incorporated in the common slope and in the multivariate irregular 

component. We thereby follow the approach proposed by Tsay (1988). For the sake of 

comparison, Figure 3 presents the IPI and GDP cycles and their forecasts from the model 

with the volatility break and the base model. The differences between these results refer 

to the IPI case but are rather small, so that the specification without the volatility break 

seems to be even better in terms of forecasting than the more complex alternative. In 

contrast, the stochastic volatility specification is needed in the CKZ model to correctly 

predict the last recession. 
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(a) Base model (b) Model with the volatility break 

Figure 3: Smoothed cycle estimates and one–year forecasts from 2007.M10 onwards based on 

the base model and the model with the volatility break in 1984.M1, respectively 

Note: NBER recession dates are represented by the vertical bands. 

3.3.3 Comparison with the Univariate Model Based on a Band–Pass Filter 

The obvious advantage of a multivariate model over an univariate approach is that it is 

capable of yielding monthly information on the GDP cycle. Forecasts of the economic 
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situation based on real GDP are in this case more precise in terms of timing than quar­

terly forecasts resulting from an univariate model. Hence, they represent an alternative 

to forecasts based on the monthly IPI. The question arises whether, apart from realtime 

forecasts, the multivariate model presented in Section 2 can as well warrant an improve­

ment in the forecasts quality over univariate methods. To examine this aspect, it seems 

natural to consider the univariate version of the proposed multivariate model. In so do­

ing, it can be ensured that potential differences in the outcomes are not a consequence 

of fundamental differences in the modeling principles and thus in the resulting stochastic 

features. In particular, the univariate structural model with trend–cycle and irregular is 

estimated for the IPI and real GDP. In the second step, the univariate band–pass filter 

described in Section 2.2 is applied to the estimated trend–cycle. Similarly to the mul­

tivariate counterpart, the procedure is fully model–based. To facilitate the comparison 

of both approaches, the forecasts are investigated in the same time intervals as in the 

multivariate case: 2007.M10–2008.M9, 2001.M1–2001.M12 and 1990.M5–1991.M4. For 

real GDP, these forecasts intervals are translated to the corresponding quarters. The 

smoothed IPI and GDP cycles along with their forecasts obtained with the univariate 

model are depicted in Figure 4. 

As regards the IPI cycle (Figures 4a, 4b and 4c), the forecasts are almost identical 

with those resulting from the multivariate model (see Figures 2a, 2b and 2c). In the GDP 

case, on the other hand, the forecasts misleadingly suggest an expansion in the intervals 

2007.Q4–2008.Q3 and 1990.Q2–1991.Q1 as can be seen in Figures 4d and 4f, respectively. 

This observation is consistent with the finding of Creal et al. (2010). They show that the 

univariate version of their model (without stochastic volatility) applied to real GDP is not 

capable of predicting the last recession. The preceding analysis leads to the conclusion 

that the multivariate model not only can produce forecasts at a frequency higher than the 

frequency of the data itself, but also offers a better framework for forecasting purposes 

than the univariate counterpart, at least for real GDP. 

Conclusions 

This article presents a new multivariate model used to construct monthly business cycle 

indicators for the US. This approach is based on a multivariate structural model and a 
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(a) IPI: Forecast interval 2007.M10–2008.M9 (d) GDP: Forecast interval 2007.Q4–2008.Q3 

(e) GDP: Forecast interval 2001.Q1–2001.Q4 (b) IPI: Forecast interval 2001.M1–2001.M12 

(f) GDP: Forecast interval 1990.Q2–1991.Q1 (c) IPI: Forecast interval 1990.M5–1991.M4 

Figure 4: Smoothed cycle estimates based on the univariate model and one–year forecasts for 

three time intervals 

Note: NBER recession dates are represented by the vertical bands. 

univariate band–pass filter. It contributes to the literature on the business cycle analysis 

in several ways. The model allows for considering series observed at different frequencies. 

Therefore, advantage can be taken of the information contained in several monthly and 

quarterly macroeconomic indicators which are considered in this article. The two obtained 

business cycle indicators are, however, given on a monthly basis. They are represented by 

the cycles of the industrial production index (IPI) and real GDP, respectively. The indi­

cators are smooth and thus consistent with the definition of a business cycle. Moreover, 

they can reproduce previous recessions very well. 

The different series used in the proposed procedure are not restricted to be coincident. 

Their behavior in relation to the business cycle is, however, not explicitly modeled by 
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extra parameters which would increase the complexity of the model. The relationship of 

other indicators with the real GDP or IPI cycle can still be analyzed after cycle estima­

tion has been performed. For that purpose, the frequency–domain concepts of the phase 

angle and the mean phase angle are employed. The analysis reveals that the results are 

virtually the same for both reference cycles. Manufacturing working hours, productiv­

ity and retail sales are leading the business cycle at the 5% significance level. Inflation 

and hours in the non–farm business are statistically significant lagging indicators. For 

the unemployment rate, the results are somewhat ambiguous. Almost all of the indica­

tors are statistically significant procyclical indicators, whereas the unemployment rate is 

statistically significant countercyclical. 

The greatest strength of the presented approach lies in its forecasting performance. 

The ability to produce high quality forecasts provided at high frequency can represent 

a valuable feature for policy making. It is demonstrated that the model is capable of 

predicting not only the most recent recession but also the two previous ones. No additional 

assumptions, like changes in the volatility, are needed to achieve such good results. For 

the sake of completeness, the forecasts obtained with the base model are compared with 

the forecasts from the model with a volatility break. This comparison cannot uncover 

any differences. The comparison with the forecasts from the univariate counterpart of 

the proposed model, on the other hand, shows that the multivariate version performs far 

better, at least in the real GDP case. 
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Appendix 

A State Space Representations 

A.1 Monthly Model With the Trend–Cycle 

A state space form for the trend–cycle in eq. (2) is 

αt+1 = Tµαt + Hµvt 
(9) 

µt = Zµαt, 

′ ) ′ where αt = (µt, β t
′ , vt is as in eq. (3), and [ ] [ ]

1/2
Ik K D 0 

Tµ = , Hµ = ζ 
1/2 , 

0 Ir 0 Dη (10)[ ]
Zµ = Ik 0 , r = 1 

Then, a state space form for the monthly model is 

αt+1 = Tαt + Hut 

yt = Zαt + Gut, t = 1, . . . , n, 

′ ) ′ where ut = (vt, ε ′ t with Var(ut) = I, T = Tµ, Z = Zµ and [
1/2 

] [ ]D 0 0ζ 1/2H = , G = 0 0 Dϵ1/2
0 Dη 0

The initial state vector α1 = (µ1
′ , β 1

′ ) ′ is 

α1 = Aδ + p, 

where δ has dimension k + r and is diffuse, A is a suitable nonstochastic matrix, and p 

has zero mean and a well defined covariance matrix. 

A.2 Monthly Model Including the Cycle 

For numerical reasons, the model for pt in eq. (8) is implemented in cascade form as [ ]
θ−1 pt = z (B)δz(B) wt, (11) 
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where wt follows the model 

wt = (1 − B)−2C⎥(B)
][
vt 

can be easily derived from (9), namely 

vt, 

wt = Zwγt, 

where Tw = Tµ, Zw = Zµ and Hw = (σn/σa)Hµ, and the matrices Tµ, Zµ and Hµ 

are given in (10). As for pt in eq. (11), we select the multivariate version of the state 

⎥
⎥

space representation used by Gómez and Maravall (1994), which is an extension to the 

nonstationary case of the approach proposed by Akaike (1974). Thus, the state space 

representation of (11) is 

ξt 

pt 

= Tvξt−1 + Hvwt 

= Zvξt, 
(12) 

A state space model for wt 

γt+1 = Twγt + Hw

∑
′ ′ ′ 
t, p , ..., p ) ′ , θz(B) = 1 + q 

i=1 θz,iB
iwhere ξt = (p , q =
 2d is the degree of both
 t+1|t t+q|t

polynomials, θz(B) and δz(B),  
0 I 0 · · · 0 I
 
 


 
,
 =
 


 


 

0 0 I · · · 0
 V1I 
.
 .
 .
 

Tv =
 Hv ,
. . . ... . .
 . .
 (13)
.
. . .
 .
 

][ −θz,q−1I 

I 0 · · · 0

0, ..., q, are the coefficients obtained from V (B) 

−θz,q −θz,1I0
 I
 VqI· · ·
 

Zv =
 ,
 

and Vi, i =
 δz(B)/θz(B). Thus, the =
 

⎥
state space model for the cascade form of the model for pt described earlier is 

vt+1φt+1 = Tpφt + Hp
(14)
 

pt = Zpφt, 

where φt = (ξt
′ , γ t

′ 
+1) 

′ and 

Tp =


[

Tv HvZw 

0 Tw

]


,
 Hp =


[

0
 

Hw

]


,
 Zp =

[

Zv 0

]
 

Similarly to (12), the state space form considered for ct in eq. (7) is 

χt+1 = Tcχt + Hcvt+1 
(15) 

ct = Zcχt, 
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′ ′ ′ where χt = (ct, c , ..., c ) ′ ,t+1|t t+q−1|t
  
0 I 0 · · · 0	 I
 

Tc =
 


 


 
,
 Hc =
 


 


 
,
 

0 0 I · · · 0
 Z1I 
.
 .
 .
 

. . . ... . .
 . .
.
. . .
 .
 

−θz,q−1I 

I 0 · · · 0

and Zi, i = 0, ..., q − 1, are the coefficients of the following polynomial 

][−θz,q −θz,q−2I · · · −θz,1II
 Zq−1I 

Zc =


C(B)
Z(B) = (1 − B)d−2(1 + B)d 

θz(B) 

Taking models (14) and (15) into account, the state space form for µt = pt + ct is [
[


Tp 0 

0 Tc

]
]


[

Hp 0 

0 Hc

][
 ]
⎥vt+1 

vt+1

αt+1 =
 αt +

αt,Zp Zcµt =

where αt = (φ ′ t, χ ′ t) 
′ Thus, the state space form for yt 

αt+1 = Tαt + Hut 

yt = Zαt + Gut, t = 1, . . . , n, 

where ut = (v⎥t′ +1, vt
′ 
+1, ε ′ t) 

′ , Var(ut) = I, and 

is
.
 

[
[
(φ ′ 

]
]

) ′ , where φ1 

[
[
and χ1 

]
]

are uncorrelated, is 

Tp 0 

0 Tc

Hp 0 0 
T
 H
=
 =
,
 ,
 

0 Hc 0

1/2Z
 G =
Zp Zc 0 0 D
=
 ,
 ϵ

, χ ′ 1The initial state vector α1 =
 1 [

A
 

0


]
 [

p
 

χ1

]


α1 δ +
=


B	 Kalman Filter and Covariance Square Root Kalman 

Smoother 

Consider a state space model 

xt+1 = Ttxt + Htϵt 

Yt = Ztxt + Gtϵt, t = 1, ..., n 
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where Var(ϵt) = I. The initial state vector x1 is specified as 

x1 = c + a + Aδ, 

where c has zero mean and covariance matrix Ω, a is a constant vector, δ is diffuse and A 

is a constant matrix. In the following, it is assumed that δ = 0. Even though the model 

proposed in this article implies δ ̸ 0 (see Appendices A.1 and A.2), this simplifying = 

assumption allows to convey the idea of the applied filtering and smoothing algorithms 

in a comprehensive way. The Kalman filter is given by the recursions 

Et = Yt − Ztx̂t|t−1, Σt = ZtPtZ	 ′ + GtGt
′ ,t 

′ Kt = (TtPtZt + HtG ′ t)Σ
−
t 
1 ,	 x̂t+1|t = Ttx̂t|t−1 + KtEt, 

Pt+1 = (Tt − KtZt)PtTt 
′ + (Ht − KtGt)Ht

′ , 

initialized with x̂1|0 = a and P1 = Ω. In the general case with δ = 0, the so–called diffuse ̸
Kalman filter and smoother are applied (see de Jong, 1991). 

The formulae for the fixed–interval Kalman smoother are as follows. For t = n, n − 

1, . . . , 1, define the so–called adjoint variable, λt, and its covariance matrix, Λt, by the 

recursions 
′ ′ Σ−1 ′ ′ Σ−1λt = Tp,tλt+1 + Zt t Λt = Tp,tΛt+1Tp,t + Zt Zt,Et,	 t 

initialized with λn+1 = 0 and Λn+1 = 0, where Tp,t = Tt − KtZt. Then, for t = n, n − 

1, . . . , 1, the projection, x̂t|n, of xt onto the whole sample {Yt : 1 ≤ t ≤ n} and its MSE, 

Pt|n, satisfy the recursions 

x̂t|n = x̂t|t−1 + Ptλt, Pt|n = Pt − PtΛtPt 

In this article the covariance square root smoother is applied since it proves to be a 

stable algorithm if the state vector has a large dimension. For square root smoothing, 
−1/2	 −1/2 ′ ′ let Z⎢t = Σt Zt and Tp,t = Tt − K⎢tZ⎢t, where K⎢t = TtPtZt + HtGt

′ )Σt . Let the QR 

algorithm produce an orthogonal matrix Ut such that [ ] [ ]
ZtUt 

′ 
1/2 

⎢
′ =

Λ ′ 
, 

Λt+1 Tp,t 0 

′ ′ ⎢where Λ ′ is an upper triangular matrix. Then, Λ = Λ1
t
/2 

and λt = Tp,tλt+1 + Z⎢tEt, where 
−1/2⎢Et = Σt Et. The square root form of the fixed interval smoother used in this article is 

as follows. 
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⎢ ⎢ ⎢Step 1 In the forward pass, compute and store the quantities Et, Kt, Zt, x̂t+1|t 
1/2

and Pt+1 . 

Step 2 In the backward pass, compute λt recursively by means of the formula λt 

′ ′ ⎢ 1/2 
= Tp,tλt+1 + Z⎢tEt. In addition, compute Λt as explained earlier. 

Step 3 Finally, using the output given by steps 1 and 2, compute recursively in 

the backward pass the fixed interval smoothing quantities ( )
1/2 1/2 ′ 

ˆ = ˆ Pxt|n xt|t−1 + Pt t λt[ ( )( )]
1/2 1/2 ′ 1/2 1/2 ′ 1/2 1/2 ′ 

= P I − P Λ Λ P PPt|n t t t t t t 
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